We present a method for estimating lighting from a single perspective image of an indoor scene. Previous
methods for predicting indoor illumination usually focus on either simple, parametric lighting that lack
realism, or on richer representations that are difficult or even impossible to understand or modify
after prediction. We propose a pipeline that estimates a parametric light that is easy to edit and
allows renderings with strong shadows, alongside with a non-parametric texture with high-frequency
information necessary for realistic rendering of specular objects. Once estimated, the predictions
obtained with our model are interpretable and can easily be modified by an artist/user with a few mouse
clicks. Quantitative and qualitative results show that our approach makes indoor lighting estimation
easier to handle by a casual user, while still producing competitive results.
|