# CCV OCTOBER 11-17

#### ΜοτινατιοΝ

- We introduce Mixture-based Feature Space Learning (MixtFSL) for obtaining a rich and robust feature representation
- our MixtFSL aims to learn a multimodal representation for the base classes



(a) without MixtFSL



(b) our MixtFSL

• The idea is to learn both the *representation* and the *mixture model* jointly in an online manner

## **RESULTS: MINIMAGENET**

• Evaluations of our MixFSL on *mini*-ImageNet using different Conv4 and ResNet12.

> Table 1. Evaluation on miniImageNet in 5-way. Bold/blue is best/second, and  $\pm$  is the 95% confidence intervals in 600 episodes.

| Method            | Backbone     | 1-shot                         | 5-shot                         |
|-------------------|--------------|--------------------------------|--------------------------------|
| ProtoNet [64]     | Conv4        | $49.42 \pm 0.78$               | $68.20 \pm 0.66$               |
| MAML [19]         | Conv4        | $48.07 \pm 1.75$               | $63.15 \pm 0.91$               |
| RelationNet [67]  | Conv4        | $50.44 \pm 0.82$               | $65.32 \pm 0.70$               |
| Baseline++ [8]    | Conv4        | $48.24 \pm 0.75$               | $66.43 \pm 0.63$               |
| IMP [2]           | Conv4        | $49.60 \pm 0.80$               | $68.10 \pm 0.80$               |
| MemoryNetwork [5] | Conv4        | $\textbf{53.37} \pm 0.48$      | $66.97 \pm 0.35$               |
| Arcmax [1]        | Conv4        | $51.90{\scriptstyle~\pm 0.79}$ | $69.07 \pm 0.59$               |
| Neg-Margin [41]   | Conv4        | $52.84 \pm 0.76$               | $\textbf{70.41} \pm 0.66$      |
| MixtFSL (ours)    | Conv4        | $52.82{\scriptstyle~\pm 0.63}$ | $\textbf{70.67} \pm 0.57$      |
| DNS [62]          | RN-12        | $62.64 \pm 0.66$               | $78.83{\scriptstyle~\pm 0.45}$ |
| Var.FSL [87]      | <b>RN-12</b> | $61.23{\scriptstyle~\pm 0.26}$ | $77.69{\scriptstyle~\pm 0.17}$ |
| MTL [66]          | <b>RN-12</b> | $61.20{\scriptstyle~\pm1.80}$  | $75.50{\scriptstyle~\pm 0.80}$ |
| SNAIL [46]        | RN-12        | $55.71 \pm 0.99$               | $68.88 \pm 0.92$               |
| AdaResNet [48]    | RN-12        | $56.88 \pm 0.62$               | $71.94{\scriptstyle~\pm 0.57}$ |
| TADAM [49]        | RN-12        | $58.50{\scriptstyle~\pm 0.30}$ | $76.70{\scriptstyle~\pm 0.30}$ |
| MetaOptNet [37]   | <b>RN-12</b> | $62.64 \pm 0.61$               | $78.63{\scriptstyle~\pm 0.46}$ |
| Simple [69]       | <b>RN-12</b> | $62.02 \pm 0.63$               | $79.64{\scriptstyle~\pm 0.44}$ |
| TapNet [83]       | <b>RN-12</b> | $61.65 \pm 0.15$               | $76.36{\scriptstyle~\pm 0.10}$ |
| Neg-Margin [41]   | RN-12        | $63.85 \pm 0.76$               | $81.57 \pm 0.56$               |
| MixtFSL (ours)    | RN-12        | $\textbf{63.98} \pm 0.79$      | $\textbf{82.04} \pm 0.49$      |

#### ACKNOWLEDGEMENT

### Mixture-based Feature Space Learning for Few-shot Image Classification Arman Afrasiyabi, Jean-François Lalonde, Christian Gagné arman.afrasiyabi.1@ulaval.ca, {jean-francois.lalonde, christian.gagne}@gel.ulaval.ca

UNIVERSITÉ LAVAL Institut intelligence et données

## **MIXTFSL**

- We present a robust two-stage scheme for training such a model.
- The training is done end-to-end in a fully differentiable fashion, without the need for an offline clustering method.





(a) initial training (b) progressive following

• We demonstrate, through an extensive experiments on four standard datasets and using four backbones, that our MixtFSL outperforms the state of the art in most of the cases tested.

## TIERED MAGENET AND FC100

• Evaluations of our MixFSL on tieredImageNet using different ResNet12 and ResNet18.

> Table 2. Evaluation on tieredImageNet and FC100 in 5-way classification. Bold/blue is best/second best, and  $\pm$  indicates the 95% confidence intervals over 600 episodes.

|                                                  | Method                     | Backbone     | 1-shot                         | 5-shot                         |  |
|--------------------------------------------------|----------------------------|--------------|--------------------------------|--------------------------------|--|
| et                                               | DNS [62]                   | RN-12        | $66.22 \pm 0.75$               | $82.79{\scriptstyle~\pm 0.48}$ |  |
|                                                  | MetaOptNet [37]            | RN-12        | $65.99{\scriptstyle~\pm 0.72}$ | $81.56 \pm 0.53$               |  |
|                                                  | Simple [69]                | RN-12        | $69.74 \pm 0.72$               | $84.41 \pm 0.55$               |  |
| eN                                               | TapNet [83]                | <b>RN-12</b> | $63.08 \pm 0.15$               | $80.26{\scriptstyle~\pm 0.12}$ |  |
| nag                                              | Arcmax <sup>*</sup> [1]    | <b>RN-12</b> | $68.02 \pm 0.61$               | $83.99 \pm 0.62$               |  |
| edIn                                             | MixtFSL (ours)             | RN-12        | $\textbf{70.97} \pm 1.03$      | $\textbf{86.16} \pm 0.67$      |  |
| tieı                                             | Arcmax [1]                 | RN-18        | $65.08 \pm 0.19$               | $83.67 \pm 0.51$               |  |
|                                                  | ProtoNet [64]              | <b>RN-18</b> | $61.23 \pm 0.77$               | $80.00 \pm 0.55$               |  |
|                                                  | MixtFSL (ours)             | RN-18        | $\textbf{68.61} \pm 0.91$      | $\textbf{84.08} \pm 0.55$      |  |
|                                                  | TADAM [49]                 | RN-12        | $40.1 \pm 0.40$                | $56.1 \pm 0.40$                |  |
|                                                  | MetaOptNet [37]            | RN-12        | $41.1\pm0.60$                  | $55.5\pm0.60$                  |  |
|                                                  | ProtoNet <sup>†</sup> [64] | RN-12        | $37.5\pm0.60$                  | $52.5\pm0.60$                  |  |
| FC100                                            | MTL [66]                   | RN-12        | $43.6 \pm 1.80$                | $55.4 \pm 0.90$                |  |
|                                                  | MixtFSL (ours)             | RN-12        | $\textbf{44.89} \pm 0.63$      | $\textbf{60.70} \pm 0.67$      |  |
|                                                  | Arcmax [1]                 | RN-18        | $40.84 \pm 0.71$               | $57.02 \pm 0.63$               |  |
|                                                  | MixtFSL (ours)             | <b>RN-18</b> | $41.50 \pm 0.67$               | $\textbf{58.39} \pm 0.62$      |  |
| *our implementation <sup>†</sup> taken from [37] |                            |              |                                |                                |  |

## **INITIAL TRAINING**

• The initial training of  $f(\cdot|\theta)$  and the learnable mixture model  $\mathcal{P}$  from the base class set  $\mathcal{X}^b$  is illustrated in figure bellow.





• Model parameters are updated using two losses: the "assignment" loss  $\mathcal{L}_{a}$ , which updates both the feature extractor and the mixture model such that feature vectors are assigned to their nearest mixture component; and the "diversity" loss  $\mathcal{L}_d$ , which updates the feature extractor to diversify the selection of components for a given class.

## CUB AND CROSS-DOMAIN

• Evaluations of our MixtFSL on CUB in object recognition and cross-domain adaptation using ResNet18.

| est/second, and $\pm$ is the 95% confidence intervals on 600 episodes |                               |                               |                               |  |  |
|-----------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|
|                                                                       | CU                            | U <b>B</b>                    | miniIN→CUB                    |  |  |
| Method                                                                | 1-shot                        | 5-shot                        | 5-shot                        |  |  |
| GNN-LFT <sup>\$</sup> [70]                                            | $51.51{\scriptstyle~\pm 0.8}$ | $73.11{\scriptstyle~\pm 0.7}$ | _                             |  |  |
| Robust-20 [13]                                                        | $58.67{\scriptstyle~\pm 0.7}$ | $75.62 \pm 0.5$               | _                             |  |  |
| RelationNet <sup>‡</sup> [67]                                         | $67.59{\scriptstyle~\pm1.0}$  | $82.75 \pm 0.6$               | $57.71{\scriptstyle~\pm 0.7}$ |  |  |
| MAML <sup>‡</sup> [18]                                                | $68.42{\scriptstyle~\pm1.0}$  | $83.47 \pm 0.6$               | $51.34{\scriptstyle~\pm 0.7}$ |  |  |
| ProtoNet <sup>‡</sup> [64]                                            | $71.88 \pm 0.9$               | $86.64 \pm 0.5$               | $62.02{\scriptstyle~\pm 0.7}$ |  |  |
| Baseline++ [8]                                                        | $67.02{\scriptstyle~\pm 0.9}$ | $83.58 \pm 0.5$               | $64.38{\scriptstyle~\pm 0.9}$ |  |  |
| Arcmax [1]                                                            | $71.37 \pm 0.9$               | $85.74 \pm 0.5$               | $64.93{\scriptstyle~\pm1.0}$  |  |  |
| Neg-Margin [41]                                                       | $72.66 \pm 0.9$               | $\textbf{89.40} \pm 0.4$      | $67.03 \pm 0.8$               |  |  |
| MixtFSL (ours)                                                        | $\textbf{73.94} \pm 1.1$      | $86.01{\scriptstyle~\pm 0.5}$ | $68.77 \pm 0.9$               |  |  |
| <sup>‡</sup> taken from [68] <sup> </sup> backbone is ResNet-10       |                               |                               |                               |  |  |

 
 Table 3. Fine-grained and on cross-domain from miniImageNet
to CUB evaluation in 5-way using ResNet-18. Bold/blue is

## **PROGRESSIVE FOLLOWING**



## AN EXTENSION OF MIXTFSL

| Table 6. Comparison of our MixtFSL with alignment (MixtFSL-<br>Align) in 5-way classification. Here, bold is the best performance. |                |                                                                          |                                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Method                                                                                                                             | Backbone       | 1-shot                                                                   | 5-shot                                                                            |  |  |  |
| Cent. Align.* [1]<br>Z MixtFSL-Align. (ours)                                                                                       | RN-12<br>RN-12 | $\begin{array}{c} 63.44 \pm 0.67 \\ \textbf{64.38} \pm 0.73 \end{array}$ | $\begin{array}{c} 80.96 \pm 0.61 \\ \textbf{82.45} \pm 0.62 \end{array}$          |  |  |  |
| ·\ E Cent. Align.* [1]<br>MixtFSL-Align. (ours)                                                                                    | RN-18<br>RN-18 | $\begin{array}{c} 59.85 \pm 0.67 \\ \textbf{60.44} \pm 1.02 \end{array}$ | $80.62 \pm 0.72 \\ \textbf{81.76} \pm 0.74$                                       |  |  |  |
| Cent. Align.* [1]<br>E MixtFSL-Align. (ours)                                                                                       | RN-12<br>RN-12 | $71.08 \pm 0.93 \\ \textbf{71.83} \pm 0.99$                              | $\begin{array}{c} 86.32 \pm 0.66 \\ \textbf{88.20} \pm 0.55 \end{array}$          |  |  |  |
| Gent. Align.* [1]<br>MixtFSL-Align. (ours)                                                                                         | RN-18<br>RN-18 | $\begin{array}{c} 69.18 \pm 0.86 \\ \textbf{69.82} \pm 0.81 \end{array}$ | $\begin{array}{r} \textbf{85.97} \pm 0.51 \\ \textbf{85.57} \pm 0.60 \end{array}$ |  |  |  |

• The progressive following stage that aim to break the complex dynamic of simultaneously determining nearest components while training the representation  $f(\cdot|\theta)$  and mixture  $\mathcal{P}$ . The approach is shown in bellow.

• Using the "prime" notation ( $\theta$ ' and  $\mathcal{P}$ ' to specify the best feature extractor parameters and mixture component so far, resp.), the approach starts by taking a copy of  $f(\cdot|\theta')$  and  $\mathcal{P}'$ , and by using them to determine the nearest component of each training instance:

• Two changes are necessary to adapt our MixtFSL to exploit the "centroid alignment" of [1].

• First, we employ the learned mixture model  $\mathcal{P}$  to find the related base classes.

• Second, they used a classification layer W in  $c(\mathbf{x}|\mathbf{W}) \equiv \mathbf{W}^{\top} f(\mathbf{x}|\theta)$  (followed by softmax).