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MOTIVATION
We introduce Mixture-based Feature Space
Learning (MixtFSL) for obtaining a rich and ro-
bust feature representation
our MixtFSL aims to learn a multimodal repre-
sentation for the base classes

(a) without MixtFSL (b) our MixtFSL

The idea is to learn both the representation and the
mixture model jointly in an online manner

MIXTFSL
We present a robust two-stage scheme for train-
ing such a model.

The training is done end-to-end in a fully differ-
entiable fashion, without the need for an offline
clustering method.
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(a) initial training (b) progressive following

We demonstrate, through an extensive experi-
ments on four standard datasets and using four
backbones, that our MixtFSL outperforms the
state of the art in most of the cases tested.

INITIAL TRAINING
The initial training of f(·|θ) and the learnable
mixture model P from the base class set X b is
illustrated in figure bellow.

…
…

loss computation 
in feature space

…

Model parameters are updated using two losses:
the “assignment” loss La, which updates both
the feature extractor and the mixture model such
that feature vectors are assigned to their nearest
mixture component; and the “diversity” loss Ld,
which updates the feature extractor to diversify
the selection of components for a given class.

PROGRESSIVE FOLLOWING
The progressive following stage that aim to break
the complex dynamic of simultaneously deter-
mining nearest components while training the
representation f(·|θ) and mixture P . The ap-
proach is shown in bellow.
Using the “prime” notation (θ′ and P ′ to spec-
ify the best feature extractor parameters and mix-
ture component so far, resp.), the approach starts
by taking a copy of f(·|θ′) and P ′, and by using
them to determine the nearest component of each
training instance:

training time (epoch)

… … …

… … …

… …

TIEREDIMAGENET AND FC100
Evaluations of our MixFSL on tieredImageNet
using different ResNet12 and ResNet18.

Table 2. Evaluation on tieredImageNet and FC100 in 5-way clas-
sification. Bold/blue is best/second best, and ± indicates the 95%
confidence intervals over 600 episodes.

Method Backbone 1-shot 5-shot

tie
re

dI
m

ag
eN

et

DNS [62] RN-12 66.22±0.75 82.79±0.48

MetaOptNet [37] RN-12 65.99±0.72 81.56±0.53

Simple [69] RN-12 69.74±0.72 84.41±0.55

TapNet [83] RN-12 63.08±0.15 80.26±0.12

Arcmax∗ [1] RN-12 68.02±0.61 83.99±0.62

MixtFSL (ours) RN-12 70.97±1.03 86.16±0.67

Arcmax [1] RN-18 65.08±0.19 83.67±0.51

ProtoNet [64] RN-18 61.23±0.77 80.00±0.55

MixtFSL (ours) RN-18 68.61±0.91 84.08±0.55

FC
10

0

TADAM [49] RN-12 40.1± 0.40 56.1± 0.40

MetaOptNet [37] RN-12 41.1± 0.60 55.5± 0.60

ProtoNet† [64] RN-12 37.5± 0.60 52.5± 0.60

MTL [66] RN-12 43.6± 1.80 55.4± 0.90

MixtFSL (ours) RN-12 44.89±0.63 60.70±0.67

Arcmax [1] RN-18 40.84± 0.71 57.02± 0.63

MixtFSL (ours) RN-18 41.50±0.67 58.39±0.62

∗our implementation †taken from [37]

Backbones and implementation details We conduct ex-
periments using four different backbones: 1) Conv4, 2)
ResNet-18 [28], 3) ResNet-12 [28], and 4) 28-layer Wide-
ResNet (“WRN”) [61]. We used Adam [49] and SGD with
a learning rate of 10−3 to train Conv4 and ResNets and
WRN, respectively. In SGD case, we used Nesterov with
an initial rate of 0.001, and the weight decay is fixed as
5e-4 and momentum as 0.9. In all cases, batch size is fixed
to 128. The starting temperature variable τ and margin m
(eq. 1 in sec. 4) were found using the validation set (see supp.
material). Components in P are initialized with Xavier uni-
form [26] (gain = 1), and their number Nk = 15 (sec. 3),
except for tieredImageNet where Nk = 5 since there is a
much larger number of bases classes (351). A temperature
factor of γ = 0.8 is used in the progressive following stage.
The early stopping thresholds of algorithms 1 and 2 are set
to α0 = 400, α1 = 20, α2 = 15 and α3 = 3.

5.2. Mixture-based feature space evaluations

We first evaluate our proposed MixtFSL model on all four
datasets using a variety of backbones.
miniImageNet Table 1 compares our MixtFSL with sev-
eral recent method on miniImageNet, with four backbones.
MixtFSL provides accuracy improvements in all but three
cases. In the most of these exceptions, the method with best
accuracy is Neg-Margin [41], which is explored in more
details in sec. 5.3. Of note, MixtFSL outperforms IMP [2]
(sec. 1 and 2) by 3.22% and 2.57% on 1- and 5-shot respec-

Table 3. Fine-grained and on cross-domain from miniImageNet
to CUB evaluation in 5-way using ResNet-18. Bold/blue is
best/second, and± is the 95% confidence intervals on 600 episodes.

CUB miniIN−→CUB
Method 1-shot 5-shot 5-shot

GNN-LFT� [70] 51.51±0.8 73.11±0.7 –
Robust-20 [13] 58.67±0.7 75.62±0.5 –
RelationNet‡ [67] 67.59±1.0 82.75±0.6 57.71±0.7

MAML‡ [18] 68.42±1.0 83.47±0.6 51.34±0.7

ProtoNet‡ [64] 71.88±0.9 86.64±0.5 62.02±0.7

Baseline++ [8] 67.02±0.9 83.58±0.5 64.38±0.9

Arcmax [1] 71.37±0.9 85.74±0.5 64.93±1.0

Neg-Margin [41] 72.66±0.9 89.40±0.4 67.03±0.8

MixtFSL (ours) 73.94±1.1 86.01±0.5 68.77±0.9

‡taken from [68] �backbone is ResNet-10

(a) without Ld (b) Ld without sg (c) Ld with sg
Figure 4. t-SNE of mixture components (RN-12, miniImageNet).

tively, thereby validating the impact of jointly learning the
feature representation together with the mixture model.
tieredImageNet and FC100 Table 2 presents similar
comparisons, this time on tieredImageNet and FC100. On
both datasets and in both 1- and 5-shot scenarios, our method
yields state-of-the-art results. In particular, MixtFSL results
in classification gains of 3.53% over Arcmax [1] in 1-shot
using RN-18, and 1.75% over Simple [69] in 5-shot using
ResNet-12 for tieredImageNet, and 1.29% and 4.60% over
MTL [66] for FC100 in 1- and 5-shot, respectively.
CUB Table 3 evaluates our approach on CUB, both for
fine-grained classification in 1- and 5-shot, and in cross-
domain from miniImageNet to CUB for 5-shot using the
ResNet-18. Here, previous work [41] outperforms MixtFSL
in the 5-shot scenario. We hypothesize this is due to the
fact that either CUB classes are more unimodal than mini-
ImageNet or that less examples per-class are in the dataset,
which could be mitigated with self-supervised methods.

5.3. Ablative analysis

Here, we perform ablative experiments to evaluate the
impact of two design decisions in our approach.
Initial training vs progressive following Fig. 4 illus-
trates the impact of loss functions qualitatively. Using only
La causes a single component to dominate while the others
are pushed far away (big clump in fig. 4a) and is equivalent
to the baseline (table 4, rows 1–2). Adding Ld without the sg

CUB AND CROSS-DOMAIN
Evaluations of our MixtFSL on CUB in object
recognition and cross-domain adaptation using
ResNet18.

Table 2. Evaluation on tieredImageNet and FC100 in 5-way clas-
sification. Bold/blue is best/second best, and ± indicates the 95%
confidence intervals over 600 episodes.
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Backbones and implementation details We conduct ex-
periments using four different backbones: 1) Conv4, 2)
ResNet-18 [28], 3) ResNet-12 [28], and 4) 28-layer Wide-
ResNet (“WRN”) [61]. We used Adam [49] and SGD with
a learning rate of 10−3 to train Conv4 and ResNets and
WRN, respectively. In SGD case, we used Nesterov with
an initial rate of 0.001, and the weight decay is fixed as
5e-4 and momentum as 0.9. In all cases, batch size is fixed
to 128. The starting temperature variable τ and margin m
(eq. 1 in sec. 4) were found using the validation set (see supp.
material). Components in P are initialized with Xavier uni-
form [26] (gain = 1), and their number Nk = 15 (sec. 3),
except for tieredImageNet where Nk = 5 since there is a
much larger number of bases classes (351). A temperature
factor of γ = 0.8 is used in the progressive following stage.
The early stopping thresholds of algorithms 1 and 2 are set
to α0 = 400, α1 = 20, α2 = 15 and α3 = 3.
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datasets using a variety of backbones.
miniImageNet Table 1 compares our MixtFSL with sev-
eral recent method on miniImageNet, with four backbones.
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cases. In the most of these exceptions, the method with best
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(sec. 1 and 2) by 3.22% and 2.57% on 1- and 5-shot respec-
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Figure 4. t-SNE of mixture components (RN-12, miniImageNet).

tively, thereby validating the impact of jointly learning the
feature representation together with the mixture model.
tieredImageNet and FC100 Table 2 presents similar
comparisons, this time on tieredImageNet and FC100. On
both datasets and in both 1- and 5-shot scenarios, our method
yields state-of-the-art results. In particular, MixtFSL results
in classification gains of 3.53% over Arcmax [1] in 1-shot
using RN-18, and 1.75% over Simple [69] in 5-shot using
ResNet-12 for tieredImageNet, and 1.29% and 4.60% over
MTL [66] for FC100 in 1- and 5-shot, respectively.
CUB Table 3 evaluates our approach on CUB, both for
fine-grained classification in 1- and 5-shot, and in cross-
domain from miniImageNet to CUB for 5-shot using the
ResNet-18. Here, previous work [41] outperforms MixtFSL
in the 5-shot scenario. We hypothesize this is due to the
fact that either CUB classes are more unimodal than mini-
ImageNet or that less examples per-class are in the dataset,
which could be mitigated with self-supervised methods.

5.3. Ablative analysis

Here, we perform ablative experiments to evaluate the
impact of two design decisions in our approach.
Initial training vs progressive following Fig. 4 illus-
trates the impact of loss functions qualitatively. Using only
La causes a single component to dominate while the others
are pushed far away (big clump in fig. 4a) and is equivalent
to the baseline (table 4, rows 1–2). Adding Ld without the sg

AN EXTENSION OF MIXTFSL
Two changes are necessary to adapt our MixtFSL
to exploit the “centroid alignment” of [1].
First, we employ the learned mixture model P to
find the related base classes.
Second, they used a classification layer W in
c(x|W) ≡W>f(x|θ) (followed by softmax).
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(a) after initial training (b) after progressive following

Figure 5. t-SNE [44] visualization of the learned feature embedding
(circles) and mixture components (diamonds), after the (a) initial
training and (b) progressive following stages. Results are obtained
with the ResNet-12 and points are color-coded by base class.

Table 4. Validation set accuracy of miniImageNet on 150 epochs.
RN-12 RN-18

Method 1-shot 5-shot 1-shot 5-shot

Baseline 56.55 72.68 55.38 72.81
Only La 56.52 72.78 55.55 72.67
Init. tr. (La + Ld) 57.88 73.94 56.18 69.43
Prog. fol. (La + Ld + Lpf ) 58.60 76.09 57.91 73.00

operator minimizes the distance between the zi’s to the cen-
troids, resulting in the collapse of all components in Pk into
a single point (fig. 4b). sg prevents the components (through
their centroids) from being updated (fig. 4c), which results
in improved performance in the novel domain (t. 4, row 3).
Finally, Lpf further improves performance while bringing
stability to the training (t. 4, row 4). Beside, Fig. 5 presents
a t-SNE [44] visualization of base examples and their associ-
ated mixture components. Compared to initial training, the
network at the end of progressive following stage results in
an informative feature space with the separated base classes.
Diversity loss Ld Fig. 6 presents the impact of our di-
versity loss Ld (eq. 4) by showing the number of remain-
ing components after optimization (recall from sec. 4.2 that
components assigned to no base sample are discarded after
training). Without Ld (fig. 6a), most classes are represented
by a single component. Activating Ld results in a large num-
ber of components having non-zero base samples, thereby
results in the desired mixture modeling (fig. 6b).
Margin in eq. 1 As in [1] and [41], our loss function
(eq. 1) uses a margin-based softmax function modulated
by a temperature variable τ . In particular, [41] suggested
that a negative margin m < 0 improves accuracy. Here,
we evaluate the impact of the margin m, and demonstrate
in table 5 that MixtFSL does not appear to be significantly
affected by its sign.

6. Extensions
We present extensions of our approach that make use of

two recent works: the associative alignment of Afrasiyabi et
al. [1], and Ordinary Differential Equation (ODE) of Xu et
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Figure 6. Number of remaining components after training for each
of the miniImageNet base classes (a) without and (b) with the
diversity loss Ld (eq. 4) using ResNet-12 and ResNet-18. The loss
is critical to model the multimodality of base classes.

Table 5. Margin ablation using miniImageNet in 5-way classifi-
cation. Bold/blue is best/second best, and ± indicates the 95%
confidence intervals over 600 episodes.

Method Backbone 1-shot 5-shot

MixtFSL-Neg-Margin RN-12 63.98±0.79 82.04±0.49

MixtFSL-Pos-Margin RN-12 63.57±0.00 81.70±0.49

MixtFSL-Neg-Margin RN-18 60.11±0.73 77.76±0.58

MixtFSL-Pos-Margin RN-18 59.71±0.76 77.59±0.58

Table 6. Comparison of our MixtFSL with alignment (MixtFSL-
Align) in 5-way classification. Here, bold is the best performance.

Method Backbone 1-shot 5-shot

m
in

iI
N

Cent. Align.∗ [1] RN-12 63.44±0.67 80.96±0.61

MixtFSL-Align. (ours) RN-12 64.38±0.73 82.45±0.62

Cent. Align.∗ [1] RN-18 59.85±0.67 80.62±0.72

MixtFSL-Align. (ours) RN-18 60.44±1.02 81.76±0.74

tie
re

dI
N

Cent. Align.∗ [1] RN-12 71.08±0.93 86.32±0.66

MixtFSL-Align. (ours) RN-12 71.83±0.99 88.20±0.55

Cent. Align.∗ [1] RN-18 69.18±0.86 85.97±0.51

MixtFSL-Align. (ours) RN-18 69.82±0.81 85.57±0.60
∗ our implementation

al. [82]. In both cases, employing their strategies within our
framework yields further improvements, demonstrating the
flexibility of our MixtFSL.

6.1. Associative alignment [1]

Two changes are necessary to adapt our MixtFSL to ex-
ploit the “centroid alignment” of Afrasiyabi et al. [1]. First,
we employ the learned mixture model P to find the related
base classes. This is both faster and more robust than [1] who
rely on the base samples themselves. Second, they used a
classification layer W in c(x|W) ≡W>f(x|θ) (followed
by softmax). Here, we use two heads (Wb and Wn), to
handle base and novel classes separately.

RESULTS: MINIIMAGENET
Evaluations of our MixFSL on mini-ImageNet us-
ing different Conv4 and ResNet12.

the representation f(·|θ) and mixture P . The approach is
detailed in algorithm 2 and shown in fig. 3. Using the “prime”
notation (θ′ and P ′ to specify the best feature extractor pa-
rameters and mixture component so far, resp.), the approach
starts by taking a copy of f(·|θ′) and P ′, and by using them
to determine the nearest component of each training instance:

u∗i
′ = argmax

u′
j∈P′

k

z′i · u′j
‖z′i‖‖u′j‖

, (6)

where z′i = f(xi|θ′). Since determining the labels does not
depend on the learned parameters θ anymore, consistency in
the assignment of nearest components is preserved, and the
“push-pull” problem mentioned above is eliminated.

Since label assignments are fixed, the diversity loss (eq. 4)
is not needed anymore. Therefore, we can reformulate the
progressive assignment loss function as:

Lpf = −
1

N

N∑
i=1

log pθ(v
∗
i
′|zi,P) , (7)

whereN is the batch size and v∗i
′ the pseudo-label associated

to the nearest component u∗i
′ found by eq. 6.

After α2 updates to the representation with no decrease of
the validation set error (function E(·) in algorithms 1 and 2),
the best network f(·|θ′) and mixture P ′ are then replaced
with the new best ones found on validation set, the temper-
ature τ is decreased by a factor γ < 1 to push the z more
steeply towards their closest mixture component, and the
entire procedure is repeated as shown in algorithm 2. After a
maximum number of α3 iterations is reached, the global best
possible model θbest and mixture Pbest are obtained. Compo-
nents that have no base class samples associated (i.e. never
selected by eq. 6) are simply discarded. This effectively
adapts the mixture models to each base class distribution.

In summary, the progressive following aims at solving
the discussed pull-push behavior observed (see sec. 5.3).
This stage applies a similar approach than in initial stage,
with two significant differences: 1) the diversity loss Ld is
removed; and 2) label assignments are provided by a copy
of the best model so far f(·|θ′) to stabilize the training.

5. Experimental validation
The following section presents the experimental vali-

dations of our novel mixture-based feature space learning
(MixtFSL). We begin by introducing the datasets, backbones
and implementation details. We then present experiments on
object recognition, fine-grained and cross-domain classifica-
tion. Finally, an ablative analysis is presented to evaluate the
impact of decisions made in the design of MixtFSL.

5.1. Datasets and implementation details

Datasets Object recognition is evaluated using the mini-
ImageNet [73] and tieredImageNet [57], which are subsets

Table 1. Evaluation on miniImageNet in 5-way. Bold/blue is
best/second, and± is the 95% confidence intervals in 600 episodes.

Method Backbone 1-shot 5-shot

ProtoNet [64] Conv4 49.42± 0.78 68.20± 0.66

MAML [19] Conv4 48.07± 1.75 63.15± 0.91

RelationNet [67] Conv4 50.44± 0.82 65.32± 0.70

Baseline++ [8] Conv4 48.24± 0.75 66.43± 0.63

IMP [2] Conv4 49.60± 0.80 68.10± 0.80

MemoryNetwork [5] Conv4 53.37± 0.48 66.97± 0.35

Arcmax [1] Conv4 51.90±0.79 69.07± 0.59

Neg-Margin [41] Conv4 52.84±0.76 70.41±0.66

MixtFSL (ours) Conv4 52.82±0.63 70.67±0.57

DNS [62] RN-12 62.64±0.66 78.83±0.45

Var.FSL [87] RN-12 61.23±0.26 77.69±0.17

MTL [66] RN-12 61.20±1.80 75.50±0.80

SNAIL [46] RN-12 55.71±0.99 68.88±0.92

AdaResNet [48] RN-12 56.88±0.62 71.94±0.57

TADAM [49] RN-12 58.50±0.30 76.70±0.30

MetaOptNet [37] RN-12 62.64±0.61 78.63±0.46

Simple [69] RN-12 62.02±0.63 79.64±0.44

TapNet [83] RN-12 61.65±0.15 76.36±0.10

Neg-Margin [41] RN-12 63.85±0.76 81.57±0.56

MixtFSL (ours) RN-12 63.98±0.79 82.04±0.49

MAML‡ [18] RN-18 49.61±0.92 65.72±0.77

RelationNet‡ [67] RN-18 52.48±0.86 69.83±0.68

MatchingNet‡ [73] RN-18 52.91±0.88 68.88±0.69

ProtoNet‡ [64] RN-18 54.16±0.82 73.68±0.65

Arcmax [1] RN-18 58.70±0.82 77.72±0.51

Neg-Margin [41] RN-18 59.02±0.81 78.80±0.54

MixtFSL (ours) RN-18 60.11±0.73 77.76±0.58

Act. to Param. [53] RN-50 59.60±0.41 73.74±0.19

SIB-inductive§[31] WRN 60.12 78.17
SIB+IFSL [68] WRN 63.14±3.02 80.05±1.88

LEO [59] WRN 61.76±0.08 77.59±0.12

wDAE [25] WRN 61.07±0.15 76.75±0.11

CC+rot [23] WRN 62.93±0.45 79.87±0.33

Robust dist++ [13] WRN 63.28±0.62 81.17±0.43

Arcmax [1] WRN 62.68±0.76 80.54±0.50

Neg-Margin [41] WRN 61.72±0.90 81.79±0.49

MixtFSL (ours) WRN 64.31±0.79 81.66±0.60

‡taken from [8] §confidence interval not provided

of the ILSVRC-12 dataset [58]. miniImageNet contains
64/16/20 base/validation/novel classes respectively with
600 examples per class, and tieredImageNet [57] contains
351/97/160 base/validation/novel classes. For fine-grained
classification, we employ CUB-200-2011 (CUB) [74] which
contains 100/50/50 base/validation/novel classes. For cross-
domain, we train on the base and validation classes of mini-
ImageNet, and evaluate on the novel classes of CUB.

ACKNOWLEDGEMENT
This project was supported by funding from NSERC-Canada, Mitacs, Prompt-Québec. Project page: https://lvsn.github.io/MixtFSL/


