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Abstract

We present PanoHDR-NeRF, a novel pipeline to casually capture a plausible full HDR
radiance field of a large indoor scene without any elaborate setups or complex capture
protocols. First, a user captures a low dynamic range (LDR) omnidirectional video of the
scene by freely waving an off-the-shelf camera around the scene. Then, an LDR2HDR
network uplifts the captured LDR frames to HDR, which are subsequently used to train a
tailored NeRF++ model. The resulting PanoHDR-NeRF pipeline can estimate full HDR
panoramas from any location of the scene. Through experiments on a novel test dataset of
a variety of real scenes with the ground truth HDR radiance captured at locations not seen
during training, we show that PanoHDR-NeRF predicts plausible radiance from any scene
point. We also show that the HDR images produced by PanoHDR-NeRF can synthesize
correct lighting effects, enabling the augmentation of indoor scenes with synthetic objects
that are lit correctly.

1 Introduction

Capturing the incoming radiance of a given scene is an important step for many augmented
reality applications, since it allows immersive exploration and realistic scene augmentation. To
accurately measure the radiance, Debevec [7] pioneered image-based lighting which involves
photographing a chrome sphere—called a light probe—at different exposures and merging
them into a single, high dynamic range (HDR) image [8]. HDR light probing was later
extended to use wide angle lenses or 360° cameras and is at the heart of the lighting capture
necessary to achieve special effects in movies today'. Because of the close proximity between
light sources and objects in the scene, the HDR radiance field of a typical indoor scene varies
rapidly: lighting near a window is vastly different from the center of the room. Accurately
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a) Casual capture b) Novel view synthesis c) HDR radiance estimation

Figure 1: We capture the continuous HDR radiance of an indoor scene. Our PanoHDR-NeRF
approach takes a) casually captured LDR images from an off-the-shelf camera (shown in
inset) as input, and performs b) novel view synthesis of the indoor scene. c) As opposed to
existing techniques such as NeRF++ [58] (left), PanoHDR-NeRF (right) properly estimates
the HDR radiance of the scene, visualized by relighting virtual test objects.

capturing indoor radiance involves moving the apparatus and repeating the operation many
times, limiting scalability. Approximations such as reprojecting the measured radiance onto
a proxy 3D model [9] must be used. To simplify the capture process, one could use inverse
tonemapping techniques [10, 39, 47] which estimate the true dynamic range information from
low dynamic range (LDR) inputs. This yields radiance estimates only where images are taken.
Can we capture and learn a representation of the scene from which HDR radiance can be
synthesized at any point?

Novel view synthesis of an object or scene from multiple views has garnered attention
recently, especially since the emergence of neural radiance fields (NeRF) [34]. In this
approach, a set of images are captured, co-registered using structure-from-motion (SfM),
and used to train a deep network that learns to predict the color and opacity along any 3D
ray using volumetric rendering. Recent flavors of NeRF model large scenes [3, 58], handle
omnidirectional input images [15], and decompose the scene into intrinsic components [5, 59].
Most NeRF-based methods accept LDR images as input and do not accurately model the
true HDR radiance of indoor environments. There are some recent attempts to address this
limitation [22, 35], which require multiple LDR images at different exposures to model the
full dynamic range of indoor lighting. Capturing 11 exposures at a point of the scene, which
is necessary to reconstruct a reasonable HDR panorama spanning over 22 f-stops, takes
approximately two minutes with a conventional 360° camera (Ricoh Theta Z1). Therefore,
using these methods to capture a HDR lighting for large indoor scenes requires specialized
setup and is tedious and cumbersome.

In this paper, we present PanoHDR-NeRF, a novel pipeline to casually capture a plausible
full HDR radiance field of an indoor scene. HDR radiance at any scene can be subsequently
estimated from PanoHDR-NeRF (fig. 1). Our method does not require any special equipment
or complicated capture protocols. It accepts as input a video sequence captured by freely
moving a commercial 360° camera around the scene. As output, it can produce the HDR
radiance at any given location in the scene. To do so, we leverage two deep neural networks:
1) an LDR2HDR model that predicts the HDR radiance from a single LDR panorama captured
by the camera and 2) a modified NeRF++ model trained on the predicted HDR outputs of
the first network. To evaluate our proposed method, we capture a set of six different indoor
scenes, which we augment with a set of ground truth HDR light probes at each scene. Our
experiments demonstrate that, despite the simplicity of the capture procedure, PanoHDR-
NeRF can accurately predict HDR radiance in a variety of challenging conditions. Our
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approach can render 360° HDR light probes, which can be used to provide correct lighting
effects when the scene is augmented with virtual objects. Datasets and code will be released
upon publication to spur further research.

2 Related work

Inverse tonemapping Inverse tonemapping aims to recover missing information in the
over- and under-saturated areas of an LDR image. While earlier methods [39] relied on
heuristics, several deep learning architectures have been proposed recently [10, 57]. These
include a 2D encoder and 3D decoder with skip connections to generate bracketed LDR image
stacks (over exposed and under exposed) [10], an encoder-decoder to reconstruct the HDR
image directly [25], and a multiscale autoencoder architecture to learn multilevel features
from LDR image which are merged to reconstruct HDR images [30]. Lee et al. [24] generate
LDR stacks with a two-branch network. DeepHDR [42] mask out the saturated areas to
reduce sub-optimal features from well-exposed and saturated pixels. HallucinationNet [27]
individually models the main components of the imaging pipeline: dynamic range clipping,
camera response function, and quantization. LANet [55] introduces a multi-task network with
a luminance attention and HDR reconstruction streams. We build on the LANet architecture
and augment it with an additional rendering loss. This combination outperforms alternatives
at predicting the high dynamic range radiance in indoor environments.

Novel view synthesis Classical methods reconstruct an explicit 3D model of the scene [9,
14, 18]. Recent works utilize off-the-shelf SfM techniques to generate a coarse geometry and
use neural networks to render photorealistic novel views [19, 32, 48]. Breaking the scene
into Multi-Plane Image (MPI) representation to render novel views by blending has been
tried [11, 33, 60]. DeepVoxels [44] learn a voxel-based volumetric representation of the scene
using Gated Recurrent Units (GRUs) [6]. FVS and SVS [40, 41] map the encoded features
from the source images into the target view and blend them via a neural network directly or
in a geometric space. Novel view synthesis from omnidirectional images are fairly limited
so far. Huang ef al. [21] reconstruct a point cloud from 360° videos to achieve real time
video playback on a VR device. Serrano et al. [43] design a layered scene representation
that facilitates parallax and real time playback of 360° video. [1, 26] present Multi-Depth
Panorama (MDP) and multi-sphere images to create 6-DoF renderings. This requires an
elaborate setup and does not accommodate free viewpoint synthesis.Bertel et al. [4] propose
a fast, casual and robust capture of immersive real-world VR experience. However it takes a
lot of memory and poor proxy geometry causes warping artifacts. Xu et al. [52] estimate the
entire indoor scene from a single image using a CNN but need room layout priors and depth
that are challenging to obtain for real-world scenes.

Neural radiance fields Neural Radiance Fields (NeRF) [34] learn an implicit volumetric
scene representation with a Multi-Layer Perceptron (MLP) that receives viewing positions
and directions as input and predicts the RGB colour and opacity as output. The original
formulation was later extended in several ways relevant to our work. NeRF++ [58], which we
leverage, models an unbounded scene by splitting it into foreground/background, learning
each separately. Mega-NeRF [49] divides the scene into smaller sections. Block-NeRF [46]
splits city-scale scenes into blocks, trains a NeRF for each block, and combines the results.
Mip-NeRF [2, 3] replaces rays with anti-aliased conical frustums for speed and accuracy.
NeRF with HDR images has been explored in two works. NeRF in the dark [35] train directly
on linear RAW images with higher effective dynamic range (14-16 bits compared to more
typical 8-bit cameras). Huang et al. [22] train from a set of LDR images captured at alternating
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Input LDR panoramas LDR2HDR network Inferred HDR panoramas Trained PanoHDR-NeRF
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Figure 2: Overview of our pipeline. At training time (left), the captured panoramas are
linearized (calibrated using a color checker, not shown) and processed by a pre-trained
LDR2HDR network to obtain HDR estimates. The HDR panoramas, along with the camera
poses obtained with OpenSfM [29], are used to train the PanoHDR-NeRF network, which
learns to synthesize HDR scene radiance at any point in the scene. At inference time (right),
we simply provide the novel camera pose and obtain the corresponding novel HDR panorama.

exposures. Both methods require multiple LDR images at different exposures, which is time-
consuming to capture and requires specialized setup. In contrast, our method plausibly
predicts the full dynamic range from a single casually captured video. Finally, panoramic
images have been explored in [16, 20], who present a method to synthesize panoramas from
a single omnidirectional input. They require depth as input and novel views can only be
rendered on a straight line path. CylindricalNeRF [23] proposes cylindrical sampling for
unbounded scenes captured in circular trajectory. OmniNeRF [15] synthesizes novel fish-eye
projection images, using spherical sampling to improve the quality of results as we do.
HDR scene capture Zhang et al. [56] leverage an RGBD scan of an indoor scene and
estimate scene parameters including HDR radiance over scene geometry. Walton et al. [50]
combine a depth sensor with a fisheye camera in a SLAM-based approach to recover geometry
and lighting. Tarko et al. [47] takes an omnidirectional video as input and uses inverse tone
mapping [10] to convert it to HDR. Yang et al. [53] learn background and objects as separate
NeRF models and combine them with a captured panoramic image into a single scene. Our
method synthesizes panoramas from novel viewpoints with full dynamic range.

3 PanoHDR-NeRF Method

Given a set of LDR panoramas {Ik}fc\’:1 captured freely using an off-the-shelf 360° camera
and associated camera poses {P; }f{vzl obtained with SfM, our objective is to predict the HDR
radiance of the scene at any novel viewpoint. We achieve this by recovering HDR values
from LDR frames using learning-based inverse tone mapping and then using them as the
supervision for novel view synthesis. An overview of our method is given in fig. 2.

3.1 High dynamic range with LDR2HDR network

Extrapolating HDR from LDR inputs is typically framed as recovering values in the over- and
under-exposed regions. Our work focuses on recovering the over-exposed regions exclusively,
with the goal of predicting accurate HDR radiance values (specially the intensities of light
sources) for realistic virtual object insertion.

Network architecture =~ We borrow the network architecture proposed in Luminance Atten-
tive Networks (LANet) [55], which is designed as a multi-task network with two luminance
attention and HDR reconstruction streams. The former attempts to create a spatially-weighted
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Cafeteria Chess room Dark class Spotlights

Figure 3: Representative images from each test scene used in the experiments.

attention map of the over-exposed regions in the input image, while the latter uses the attention
map to estimate the HDR images. Note that we do not use their proposed adaptation for
panoramas since it did not improve the performance in our case. So, we train the model on
equirectangular images directly.
Loss functions For the LDR2HDR module, we use the same loss function £}, as [55],
combining scale invariant and luminance segmentation losses. The HDR panoramas are
radiance values used to light the scene. To match the rendering quality, we use a rendering
108S Lrend

lrena = ||T yupr — T tupr| |2, (D

where T is a pre-computed transport [45] matrix for a Lambertian scene (without interreflec-
tions), ygpr is the predicted HDR panorama, and typg is the ground truth. A “spiky sphere*
on a flat ground plane seen from above is rendered [57] to capture spatially-varying lighting.
The rendered images guide the network about the color and direction of HDR lighting in the
scene. The final loss for training the LDR2HDR network is an equally weighted combination
Indr = llanet + rend-

Datasets We pretrain the LDR2HDR network on the Laval Indoor HDR Dataset [13],
which consists of 2,400 HDR panoramas captured in a variety of indoor settings, with a train,
validation and test split as 80:10:10. Since the sensor used to capture it(Canon 5D Mark iii
camera) and the sensor we use to capture indoor scenes (Ricoh Theta Z1) are different, a
domain gap was observed. To alleviate this, we finetune the LDR2HDR network on a small
dataset of 78 HDR panoramas captured at different locations,different from the test scenes,
using the test camera.

3.2 Continuous HDR radiance with PanoHDR-NeRF

Network architecture =~ We take inspiration from and combine several recent work on NeRF.
First, we employ the NeRF++ architecture as the base. Second, similar to [3], we incorporate
the anti-aliased conical frustums from Mip-NeRF [2]. We train PanoHDR-NeRF by sampling
rays in spherical coordinates instead of pixel coordinates (more details in supplementary).
Loss functions We train PanoHDR-NeRF using supervision from LDR2HDR network.
Traditional volume rendering methods are used to predict the radiance and densities of points
sampled on the ray as in [2, 58]. We define NeRF loss ¢, between predicted radiance é and
ground truth HDR e as

Loert = Z ||E(I‘) 7E(l‘)||2, 2

reR(P)

where E = log(1+ e) and R(P) is the set of camera rays at pose P.

The photographer, who inevitably is in the images, is segmented using an off-the-shelf
segmentation algorithm [17], and the corresponding pixels are ignored in the loss.
Datasets To obtain training data for a given indoor scene, we casually capture a set of
LDR panoramas using a commercial 360° camera (Ricoh Theta Z1). We attach the camera
to a portable tripod and capture a 360° video while waving the camera around the scene to
cover the entire volume as much as possible for a few minutes (typically 3—5 minutes for
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Input LDR LDR2HDR pre-trained LDR2HDR finetuned
Dataset PU-PSNRT RMSE| HDR-VDP3{|PU-PSNRT RMSE| HDR-VDP31|PU-PSNRT RMSE| HDR-VDP3{
Chessroom| 31.659  0.051 8.067 33.994  0.048 8.234 36.995  0.005 8.492
Stairway 31.964 0224 7.881 33297 0213 8.016 33685 0.019 8.489
Cafeteria | 25299 5378 6.098 26664 5268 6.418 28499 4.061 7.164
Spotlights | 23.939  3.489 6.001 25118 3438 6.097 28966 0.877 7.667
Darkclass | 30.657 0364  7.429 32125 0340 7.592 32594 0.262 8.135
Smallclass | 32.353  2.162 8.018 34.095  1.889 8.267 35465 0.221 8.678
Overall | 28399  1.703 7243 | 30913 1.634 7406 | 33.651  0.696 8.209

Table 1: Quantitative comparison of different strategies for recovering radiance across cap-
tured scenes. “Input LDR” are on the images captured by the camera, “LDR2HDR pre-trained”
is on our network pre-trained on the Laval Indoor Dataset, and “LDR2HDR finetuned” is
after the network finetuned to test camera. As expected, finetuning helps bridge the domain

gap and significantly improves the results.
Input LDR LDR2HDR pre-trained LDR2HDR finetuned HDR ground truth

Stairway  Spotlights

Small class

— T m— ~— =

Figure 4: Qualitative comparison of different g_t?ategies for r_ec‘:overing radiance across captured
scenes. For each example, the figure shows virtual test objects relit to demonstrate the dynamic
range. Note that despite some color imbalance (e.g. “Spotlights™), fine-tuning helps bridge
the domain gap between the training data and the captured images. Images tonemapped for
display with y=2.2.

the scenes used in the experiments). Approximately, 200 frames are then extracted from the
video at even intervals. The camera parameters of the input LDR panoramas are recovered
using OpenSFM[29] and given as input to PanoHDR-NeRF.

4 Evaluation

In this section, we evaluate our approach against a set of challenging real scenes, where the
ground truth HDR radiance is also captured at several locations. We further establish the
sensitivity of design choices and compare them to closely related techniques.

4.1 Radiance capture evaluation dataset

For evaluation, we capture different real indoor scenes from a variety of different environments
(fig. 3). For each scene, we first capture a 360° video using an off-the-shelf panoramic camera
as described in sec. 3.2. We also capture a set of HDR panoramas for evaluation to use as
ground truth. To obtain these, we set the camera on a tripod at certain locations in the scene
(between 3-10 locations per scene) and program it using exposure bracketing to capture 11
exposures spanning over 22 f-stops that are subsequently merged to HDR using the PTGui
Pro commercial software. We also capture a short video with the same camera parameters
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w/o render loss render loss
PU-PSNR1T HDR-VDP31 PU-PSNR1 HDR-VDP31
Hall. Net [27] 30.06 7.54 31.51 8.12
LANet [55] 3243 8.26 38.20 9.67

Table 2: Quantitative comparison of two single image HDR estimation architectures on the
Laval Indoor HDR test set, with and withough the rendering 1oss #;cpger While training the
network. Render Loss with LANet significantly improves the results.

as the captured video at the same location as the HDR. We then extract a single frame
from that video, allowing us to have an LDR image at the exact same location as its HDR
counterpart. The resulting LDR image is linearized using a pre-calibrated camera response
function obtained with a Macbeth color checker. In total, we capture six different scenes
containing a total number of 10 LDR/HDR ground truth panorama pairs.

4.2 LDR2HDR evaluation

The LDR2HDR network presented in sec. 3.1 is evaluated on the test set described in
sec. 4.1. Tab. 3.2 compares the performance obtained by: using the LDR images directly,
the LDR2HDR network pre-trained on the Laval Indoor HDR Dataset [13], and after fine-
tuning on the 78 HDR dataset captured with the same test camera. For evaluation, we use
the “PU-PSNR” [28], which is a perceptually-uniform PSNR adjusted for HDR images. In
addition, the “RMSE” corresponds to the rendering loss in eq. (1). Finally, we also report the
HDR-VDP3 [37], where a value of 10 indicates a perfect match. Here, color encoding is set
as “rgb-bt.709” for HDR evaluation, assuming a 24-inch display, 1920 x 1080 resolution, and
a viewing distance of 1 meter.

As shown in tab. 3.2 and illustrated qualitatively in fig. 4, there exists a significant domain
gap between the training dataset and the test camera: simply pre-training on [13] works
marginally better than the input LDR image itself, but finetuning results in a significant
performance gain on all metrics. Visually, finetuning produces renderings that look very
similar to the ground truth (fig. 4).

4.3 PanoHDR-NeRF evaluation

To evaluate how well PanoHDR-NeRF works in terms of capturing the high dynamic range
radiance field, we use the same set of ground truth HDR images as described in sec. 4.1. We
infer environment maps at the locations of HDR panoramas and use them to render a synthetic
scene. We modified NeRF++ to work with equirectangular image representation and trained
directly on the LDR frames of the input video. The rendering results of NeRF++ appear dark
compared to ground truth, and the lighting is not realistic (fig. 5). In addition, the generated
shadows are soft and faded. In contrast, PanoHDR-NeRF produces well-lit results, with sharp
shadows that are similar to ground truth.

4.4 Ablation study

LDR2HDR network architecture =~ We compare between two recent SOTA single image
HDR estimation architectures, namely HallucinationNet [27] and LANet [55], with and
without our rendering loss. For this, we evaluate on the Laval Indoor HDR [13] test set
and report results in sec. 4.4. With its saturation-driven attention, the LANet architecture
outperforms HallucinationNet. In addition, the use of the rendering loss £;enq (€q. (1)) helps the
network focus on the bright light sources, which is crucial for accurate radiance reproduction.
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Input LDR NeRF++ NeRF-LDR2HDR PanoHDR-NeRF (ours)

GT

(d) Stalrway

(d) Chess Room

(e) Cafeteria

Figure 5: Comparing input LDR, NeRF++, NeRF-LDR2HDR, PanoHDR-NeRF (ours), and
GT panoramas. For each example, the figure shows a virtual test object relit to show the
dynamic range. While NeRF++ is able to model the scene correctly, it is unable to capture
the radiance of the scene. PanoHDR-NeRF is able to faithfully capture the radiance of the
scene. We compare it with NeRF-LDR2HDR which estimates HDR from NeRF++ outputs.
Although it is able to closely estimate the radiance, it leads to flickering between consecutive
frames. Images tonemapped for display with y = 2.2.

Linear space Log space HDR ground truth

.Chess room Stairway Spotlights

Figure 6: Comparing panoramas generated by PanoHDR-NeRF after loss in linear space and
log space. For each example, the figure shows (top) the panorama with (bottom) virtual test
objects relit to show the dynamic range. While the network learns the high dynamic range in
both cases, we observe that taking loss in linear space leads to poor visual quality and floating
artifacts in the output panoramas. PanoHDR-NeRF produces better results when trained in
log space, consistent with [25, 42, 55].
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Linear loss PanoHDR-NeRF NeRF-LDR2HDR
Dataset PU-PSNRT RMSE| PU-PSNR{1 RMSE| PU-PSNR1 RMSE|

Chess room  35.152 0.011 36.941 0.012 35.991 0.006
Stairway 31.810 0.055 33.169 0.056 32.707 0.055
Cafeteria 24.139 4.376 28.029 4.179 26.537 5.298
Spotlights 26.719 0.909 28.657 0.431 27.324 1.619
Dark class 28.431 1.367 30.687 1.509 29.819 0.621
Small class  36.829 0.043 37.687 0.054 38.529 0.006

Overall 29.725 1.071 32.528 1.038 31.650 1.301

Table 3: Quantitative comparison between linear (left) and log (middle) losses used for
training. Comparison of PanoHDR-NeRF with NeRF then LDR2HDR is at right

Planar vs spherical sampling We compare the impact of planar vs spherical sampling (c.f.
sec. 3.2) for training our network on LDR images. In both cases, we follow the hierarchical
sampling strategy of NeRF [34] and train the network with 64 coarse samples and 128 fine
samples. We observe that sphere sampling outperforms planar sampling for omnidirectional
images as it does not oversample points at the poles but does so uniformly on the sphere.
(more details in supplementary)

Loss in log space  We evaluate the importance of computing the loss in log space (c.f.
sec. 3.2) in sec. 4.4, which suggests that the network is able to estimate the high dynamic
range equally well with or without the log-space loss. However, fig. 6 shows that training in
linear space results in more floating artifacts and blurrier images than those obtained by the
log loss.

Order of operations PanoHDR-NeRF uses a NeRF network trained on HDR images. It is
also possible to reverse the order by training the NeRF on LDR images and pass its output
through the LDR2HDR network (dubbed “NeRF-LDR2HDR”). We compare these options in
sec. 4.4 and fig. 5. Though the metrics given in the table don’t differ much, the supplementary
video shows PanoHDR-NeRF produces temporally more stable results. This could be due to
the averaging that naturally happens within the NeRF network.

5 Discussions and Conclusions

The main contribution of this work is a novel pipeline to predict the full HDR radiance of an
indoor scene. without using special hardware, careful scanning of the scene, or intricately
calibrated camera configurations. Our pipeline can work with a single, off-the-shelf 360°
camera that is moved around the scene. Although [22, 35] have demonstrated recovery of
HDR intensties of forward facing scenes, they require multiple sets of LDR images at various
exposures. Recovering HDR intensities for large indoor scenes using these methods requires
an elaborate setup which is tedious and cumbersome. PanoHDR-NeRF can render novel
360° views from any point within an unbounded indoor scene in high dynamic range from a
casually captured scene. We show their use for the realistic relighting of virtual objects in
real scenes, hopefully getting one step closer to democratizing augmented reality.

Limitations and future work Blurriness of the NeRF results is a big limitation of this work,
despite using cone-casting from Mip-NeRF. We believe further improvements such as [3] can
help in reconstructing sharper estimates. Another limitation is that the photographer capturing
the scene ends up modifying the light field ever so slightly by casting shadows, creating
reflections off of shiny surfaces, etc. Unfortunately, the intensity changes this creates are
too soft for existing shadow detectors [51]. Methods modeling transient changes [31] could
potentially be of help. The finetuning for each camera introduces additional effort though
only once per camera. Future research can improve generalization across cameras, perhaps
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using multiple cameras for training, or through other data augmentation techniques. Our
approach learns radiance and view synthesis in two independent steps by specialized networks.
Exploring how both can be done simultaneously, potentially in conjunction with geometry
and material estimation [5, 59], is an exciting direction for future work. Finally, recent efforts
have demonstrated how to significantly shorten training [36, 54] and inference [12, 38] times
of NeRF-based approaches, which can be incorporated into PanoHDR-NeRF. By reducing the
time between capture and visualization, PanoHDR-NeRF can be used for AR/VR applications
such as virtual tours and VFX generation.
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