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This document complements our main paper, providing
the following supplementary information regarding the con-
ducted experiments and analysis:
• Additional description of the lighting estimation methods

(see sec 3.2. of the main paper) used in sec. 1.1;
• A more in-depth description of the scene selection (see

sec 3.2. of the main paper) given as input to the lighting
estimation methods in sec. 1.2;

• Details on the geometry, materials, and rendering of the
stimuli used in the psychophysical study (see sec 3.2. of
the main paper), in sec. 1.3;

• Description of the hardware used for the psychological
experiment (see sec 3.3. of the main paper) in sec. 1.4;

• Additional information on the procedure during the psy-
chophysical experiments (see sec 3.3. of the main paper),
in sec. 1.5;

• A more in-depth analysis of the participants in the psy-
chological experiment (see sec 3.3. of the main paper), in
sec. 1.6;

• Supplementary statistical tests on the psychophysical re-
sults (see sec 4.1. of the main paper) are computed in
sec. 2.1;

• Additional analysis of the scores obtained in the psy-
chophysical experiments (see sec 4.2. of the main paper),
with examples (in sec. 2.2), per image score (in sec. 2.3),
and agreement for individual observers (in sec. 2.4);

• Additional analysis of the scores of the various metrics
(see sec 5. of the main paper), in sec. 3.1, statistical testing
in sec. 3.2, and for FID in sec. 3.3;

• Additional comparisons between different network archi-
tectures and an analysis of the selected network (see sec
6.1. of the main paper), in sec. 4.1;

• Additional content regarding the generalisation study con-
ducted with the selected architecture (see sec 6.2. of the
main paper), in sec. 4.2.

1. Psychophysical experiment

The various steps of our psychophysical study are described
in the following sections. The lighting estimation methods

used are described in sec. 1.1, and the selected scene given as
input to them is detailed in sec. 1.2. The design of the stimuli
is explained in sec. 1.3. The hardware and the procedure
of the experiment are discussed in sec. 1.4 and sec. 1.5,
respectively. The study participants are described in more
detail in sec. 1.6.

1.1. Lighting estimation methods

In the following sections, we describe the lighting estimation
methods used in the indoor and outdoor psychophysical
studies (see sec 3.2. of the main paper).

Environment map. We consider three state-of-the-art
non-parametric lighting estimation methods to light our vir-
tual scene. Weber et al. [29] proposes a two-stage indoor-
only approach, where a dominant light source and scene
layout are estimated and given as input to a texture network
to predict the entire environmental texture based on the in-
put image. EverLight [6] proposes a different two-stage
method working simultaneously indoors and outdoors. It
first estimates the lighting parameters as spherical gaussians,
and then integrates them into environment map generation
via guided co-modulation [5]. StyleLight [27] is a recent
method that leverages the training of StyleGAN [13] with
GAN inversion [22] to predict complete 360◦ environment
maps from input images.

Parametric. We consider Gardner et al. [8] to provide
parametric indoor lighting estimations. This method predicts
three light sources parameterised by their direction, distance,
angular size, and colour. For the outdoor parametric lighting
model, we chose Zhang et al. [30], which trains a network to
directly estimate the Lalonde-Matthews sky parameters [15]
from a given outdoor image.

Classical. In contrast to these recent sophisticated
learning-based methods, we also include Khan et al. [14].
This technique lacks any learning components and instead
determines the lighting conditions by projecting the back-
ground image onto a sphere and then mirroring it to generate
a complete LDR environment map.

All the environment maps generated by the indoor and
outdoor lighting estimation methods for the user study are
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presented in fig. 1. The first and ninth columns display
the input given to the lighting estimation methods (more
details in sec. 1.2), extracted from the ground-truth panora-
mas, shown in the third and eleventh columns. The second
and tenth columns show the reconstructed first-order spher-
ical harmonics, used to select the scenes (more details in
sec. 1.2).
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Figure 1. IBLs generated by the different indoor and outdoor lighting methods (columns) for each scene (rows). The first and ninth columns
correspond to the region extracted from the indoor/outdoor scene, corresponding to a 50◦/90◦ FoV. This region is taken from the centre
of the full GT panorama (for most scenes), shown in the third and eleventh columns. The second and tenth column correspond to the
reconstruction of the first-order spherical harmonics, showing the variety of the lighting in the selected scenes. The IBLs are reexposed and
tonemapped with γ = 2.4 for display.
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Figure 1. (contd) IBLs generated by the different indoor and outdoor lighting methods (columns) for each scene (rows). The first and ninth
columns correspond to the region extracted from the indoor/outdoor scene, corresponding to a 50◦/90◦ FoV. This region is taken from the
centre of the full GT panorama (for most scenes), shown in the third and eleventh columns. The second and tenth column correspond to the
reconstruction of the first-order spherical harmonics, showing the variety of the lighting in the selected scenes. The IBLs are reexposed and
tonemapped with γ = 2.4 for display.



We utilise the output generated by these models as envi-
ronment maps to illuminate the synthetic scene (sec. 1.3).
For the parametric models, we initially convert the output
parameters into environment maps and employ them in ren-
dering stimuli.

1.2. Lighting estimation input scenes

High dynamic range (HDR) panorama images are used to
extract limited FoV low dynamic range (LDR) regions to
give as input to the lighting estimation methods (see sec 3.2.
of the main paper). In our assessment of indoor lighting
estimation techniques, we adhered to the procedures out-
lined in Weber et al. [29]. Our evaluation was conducted
on the test set of Laval indoor dataset [7], comprising 224
high-resolution HDR panoramas. Within this test set, we
systematically extracted 10 LDR images from each of the
panoramas using the sampling distribution identical to We-
ber et al. [29]. This process yielded a grand total of 2240
images for our evaluation. We adopted the approach detailed
in [6] to assess outdoor lighting. This method leverages
839 distinct outdoor HDR panoramas sourced from SHLight
dataset [3]. From these, it derives three LDR images ac-
cording to the sampling distribution of [6], resulting in an
evaluation set comprising 2517 images.

Region extraction. To obtain the images given as input
to the lighting estimation methods, an FoV of 50◦/90◦ is ex-
tracted from the centre of the indoor/outdoor HDR panorama,
which is tonemapped with γ = 2.4 and reexposed. The ex-
tracted regions have a resolution of 512× 512 for the indoor
images and 256× 256 for the outdoor images. Examples of
the extracted regions used in this study are shown in the first
and ninth columns of fig. 1.

Scene selection. 25 scenes are selected from the indoor
and outdoor datasets. We limited the number of scenes in our
study to keep the experiment time below ∼30min, in order
to avoid errors caused by observers’ fatigue. 25 scenes are
considered sufficient to represent different types of environ-
ments with diverse lighting. In order to have a great variety
of lighting environments, the coefficients of the first-order
spherical harmonics are extracted from the HDR panora-
mas, using the skylibs Python library. The scenes are
selected by taking the medoid of the clusters obtained using
the k-means algorithm, where k = 25, from the sklearn
Python library. The resulting clusters for the indoor (left)
and outdoor (right) are shown in fig. 2. Examples of the
first-order spherical harmonics reconstruction of the selected
scenes are shown in the second and tenth columns of fig. 1,
which indeed demonstrates a great variety. The scenes that
contain too much noise are removed from the dataset, as
they would potentially distract the observers from judging
the realism of the inserted virtual object.

1.3. Stimuli

The stimuli for tasks 1 and 2 (see sec 3.2. of the main paper)
have different geometries (described below), and each task
has a diffuse and glossy variation, with details regarding the
materials given subsequently. The rendering details are also
indicated.

For reference, the stimuli used in the indoor and outdoor
psychophysical experiments, for the diffuse/glossy experi-
ments are shown in fig. 3/fig. 4 for task 1 and fig. 5/fig. 6 for
task 2.



2 4 6 8
x

6

7

8

9

10

11

y

0 5 10 15 20 25
x

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

y

Figure 2. Clusters obtained k-means algorithm, where k = 25, for the indoor (left) and outdoor (right) high dynamic range (HDR)
panorama datasets. The projection to R2 is done using UMAP [18]. The different colours indicate the different clusters. The axes are in
arbitrary units.
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Figure 3. Stimuli used for the task 1 experiment with the diffuse sphere. The full HDR panorama (first and ninth columns) is reexposed and
tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and tenth columns),
corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered stimuli using
the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered stimuli using the
IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 3. (contd) Stimuli used for the task 1 experiment with the diffuse sphere. The full HDR panorama (first and ninth columns) is
reexposed and tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and
tenth columns), corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered
stimuli using the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered
stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 4. Stimuli used for the task 1 experiment with the glossy sphere. The full HDR panorama (first and ninth columns) is reexposed and
tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and tenth columns),
corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered stimuli using
the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered stimuli using the
IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 4. (contd) Stimuli used for the task 1 experiment with the glossy sphere. The full HDR panorama (first and ninth columns) is
reexposed and tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and
tenth columns), corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered
stimuli using the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered
stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 5. Stimuli used for the task 2 experiment with the diffuse sphere. The full HDR panorama (first and ninth columns) is reexposed and
tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and tenth columns),
corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered stimuli using
the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered stimuli using the
IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 5. (contd) Stimuli used for the task 2 experiment with the diffuse sphere. The full HDR panorama (first and ninth columns) is
reexposed and tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and
tenth columns), corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered
stimuli using the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered
stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 6. Stimuli used for the task 2 experiment with the glossy sphere. The full HDR panorama (first and ninth columns) is reexposed and
tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and tenth columns),
corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered stimuli using
the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered stimuli using the
IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 6. (contd) Stimuli used for the task 2 experiment with the glossy sphere. The full HDR panorama (first and ninth columns) is
reexposed and tonemapped with γ = 2.4 for display, for the indoor and outdoor cases. The region extracted from the scene (second and
tenth columns), corresponding to a 50◦/90◦ FoV, taken from the centre of the full indoor/outdoor panorama (for most scenes). The rendered
stimuli using the ground truth IBLs (first/ninth columns) are shown in the third/eleventh columns. The other columns are the rendered
stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.



Geometry. For both tasks, the stimulus corresponds to a
sphere, with a radius of 1.5m, on a plane, to act as a shadow
catcher. In task 1, the plane is 30m × 30m to cover the
entire FoV and in task 2, the plane is 2.5m× 3m to allow
the composited background to be seen. The background
image used in task 2 corresponds to the extracted region
from scenes given as input to the indoor lighting estimation
methods (sec. 1.2), to give the virtual objects context.

A virtual camera is positioned parallel to the x− y plane,
facing the +x axis, thus capturing in its FoV the y− z plane,
where y points towards the left and z upwards. The virtual
camera is raised by 1.6m from the perpendicular axis of the
horizontal plane (z) with regard to the origin, to simulate the
standard height of humans. In task 1, the FoV is inclined
by 30◦ with regards to the horizon, to include the shadows
produced by the sphere on the plane and for task 2, the FoV
is inclined by 90◦, to align realistically with the composited
background image.

Materials. For both tasks, two separate experiments are
done on spheres with two different materials (diffuse and
glossy), which use the Disney Principled BRDF [2]. The
diffuse material has a roughness of 1.0 and a specularity
of 0.0, whilst the glossy material has a roughness of 0.1
and a specularity of 1.0. The Lambertian sphere allows the
observers to evaluate the lower frequency light cues, such as
the colour, intensity, and degree of collimation. The opaque
glossy sphere includes the high frequency light cues and the
texture to be judged by the observer. For both versions, the
plane maintains a grey Lambertian material with the same
parameters as the diffuse sphere. All the objects have an
albedo of 0.18.

Rendering. The synthetic objects are rendered us-
ing the physically based rendering engine Cycles in
Blender [4]. The rendered stimuli have a resolution
of 256 px × 256 px, as the extracted regions from scenes
given as input to the indoor lighting estimation methods
(sec. 1.2). The renders are saved in the exr format and then
tonemapped with γ = 2.4 and reexposed to be displayed on
the monitor used during the experiment (sec. 1.4).

1.4. Hardware

The experiment (see sec 3.3. of the main paper) is conducted
in a controlled lab setting to ensure the data collected is
uniform. The experiment is carried out in a matte black
room (painted walls and ceilings, with black rug flooring)
with a standard keyboard placed on a desk and the monitor
set to sRGB. The monitor was the only light source. The
observers are seated at ∼70 cm from the monitor, which
gives a 11.5◦/17◦ visual angle for task 1/2. The experimental
setup is shown in 7.

Figure 7. Photograph of the experimental setup of the psychophysi-
cal experiment.

The experiment runs on MATLAB (version R2023a) and
uses the Psychophysics Toolbox. An example of the
screen displayed to the observers is shown in 8 for all four
experiments.

1.5. Procedure

During the experiment (see sec 3.3. of the main paper), the
images are selected using the arrows on the keyboard. The
background is middle grey.

Observers are asked to participate in two of the four exper-
iments (task 1 and task 2), with randomly assigned material
for the first task and the opposite material for the second
task, to avoid potentially causing bias. A break is offered
between the experiments to avoid fatigue. Each experiment
takes 10–35min to complete. No time restriction is imposed
on the observers to avoid inducing stress and bias. The ob-
servers are advised to follow their intuition to determine
their preference and that each combination of stimuli shown
should be analysed in around than 5 s, so the experiment
would not last too long. This is done to avoid the fatigue or
boredom they experience when doing the task for too long.

At the beginning of each experiment, a short tutorial is
shown to the observer with an example not included in the
dataset. The observers are informed that the images always
contain the same sphere (same geometry) made of the same
material, for all the stimuli they see during that specific
experiment, and that only the lighting has changed. They are
also informed that there is no right answer, and that we are
only trying to measure their preferences. The participants are
unaware that different lighting estimation methods have been
used to produce the stimuli. To confirm that the observers
are not colourblind, an Ishihara test is conducted for each
participant before starting the experiments.



Figure 8. Examples of the stimuli presented during the experiments. Top row are the stimuli fr the comparison experiments for the diffuse
(left) and glossy (right) spheres and the bottom row are the stimuli for the realism experiments.

1.6. Participants

A total of 49 unique observers (33M/16F) participated in
the study (see sec 3.3. of the main paper). Some observers
were asked to participate twice (in different sessions) and
were assigned the two remaining experiments they had not
previously done. 12 observers participated in all four outdoor
experiments.

Fig. 9 shows the temporal evolution of the score based on
the number of participants, to validate the convergence of the
preferred methods by the observers. The curves show little
variance as more participants are added after ∼15 for the
indoor experiment (left) and ∼8 for the outdoor experiment
(right), which confirms the number of participants included
in the study is sufficient to describe a general tendency.

None of the participants were authors. 11 observers were
students from the computer vision department (labelled ex-
perts), who were unaware of the project.

The scores obtained for the indoor lighting estimation
methods for the expert (yellow) and naive (teal) observers
are shown in fig. 10 (the procedure for computing score is
described in sec. 4.1. of the main paper). It is possible to
see that the scores for all the experiments are similar, which
confirms that both samples of observers have the same trends
and do not use different light cues in the stimuli.

The agreement score (described in sec. 5.1. of the main
paper) between the expert and naive observers and the met-
rics, shown in fig. 11, also displays the same trends between

each group, which further confirms that their behaviour is
similar.

2. Psychophysical results
Additional analysis of the psychophysical results (see sec 4.2.
of the main paper) is done in this section. Further statistical
testing is done on the data in sec. 2.1, an example of the
observers’ ranking of a set of stimuli for an input scene is
shown in sec. 2.2, and the trends of the preferred methods
per image is shown in sec. 2.3. The agreement score of the
individual observers is discussed in sec. 2.4

2.1. Agreement and consistency of the psychophys-
ical results

In addition to the Thurstone Case V Law of Compara-
tive Judgement z-score [26], computed in sec. 4.1. of
the main paper, we demonstrate the agreement and con-
sistency of the psychophysical data by computing Fleiss’ κ
and Kuder-Richardson-20 (KR20), respectively. The out-
door results are likely to be less statistically robust, as
there are 60% fewer participants than for the indoor ex-
periments. However, the results in tab. 1 show that the
results for the outdoor experiment exhibit agreement and
consistency. Noting as (task 1/task 2), the scores are higher
for glossy (κ = 0.437/0.536, KR20= 0.907/0.936) than
diffuse (κ = 0.345/0.141, KR20=0.868/0.675). KR20 is
higher than 0.85 in all but task 2 diffuse (where it is still
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Figure 9. Convergence of the score for the different lighting estimation methods as a function of the number of participants. The line
uncertainties correspond to 95% confidence interval.

at a remarkable 0.67), showing internal consistency. Fleiss’
κ values indicate moderate agreement for glossy [16], fair
agreement for task 1 diffuse and slight agreement for task 2
diffuse.

2.2. Example of stimuli ranking

An example of each indoor lighting estimation method’s
ranking (in decreasing order) and the associated score for
each stimulus for the same input scene is shown in fig. 12, for
each experiment. When comparing against the ground truth
stimulus (task 1) for the diffuse sphere (first row), observers
seem to agree—at least in essence—to what IQA metrics are
trying to achieve: having an image as close as possible to
the ground truth reference. E.g. the lighting estimation of

Table 1. Fleiss’ κ and Kuder-Richardson 20 scores computed on
all the observers’ results for each experiment.

Task Material Fleiss’ κ Kuder-Richardson 20

Indoor Task 1 Diffuse 0.210 0.890
Glossy 0.255 0.915

Task 2 Diffuse 0.149 0.842
Glossy 0.269 0.922

Outdoor Task 1 Diffuse 0.345 0.868
Glossy 0.437 0.907

Task 2 Diffuse 0.141 0.675
Glossy 0.536 0.936

Gardner et al. [8] does not accurately match the ground truth,
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Figure 10. Thurstone Case V Law of Comparative Judgement
scores from the expert (yellow) and naive (teal) observers as a func-
tion of the different indoor lighting estimation methods (columns),
for the different types of sphere materials used in the experiments
(rows). Error bars correspond to 95% confidence interval.

while the one produced by Weber et al. [29] resembles the
ground truth very closely. Yet, when the resulting lighting
estimations are put into context (task 2, third row), lighting
accuracy based on the ground truth does not seem to matter
as much to be considered plausible. In this case, the preferred
estimated lighting does not seem to match well the ground
truth.

Fig. 12 also illustrates an example of the trend observed in
fig. 4 of the main paper for the glossy experiments produced
by Gardner et al. [8]. The observers seem to consider texture
primordial when observing a more reflective surface. They
seemingly consider it more important than having a plausible
lighting intensity and direction, when judging the plausibility
of an inserted object.

2.3. Scores per image

The scores from all the observers for each stimulus are shown
in fig. 13. This figure clearly shows that glossy stimuli from

Gardner et al. [8] (indoors) and Zhang et al. [30] (outdoor)
are, in general, rarely picked. For the other lighting estima-
tion methods, we can see a greater variance in the scores,
with some images performing very well or very poorly. This
indicates some of the limitations of a given method in some
specific case.

2.4. Individual observer agreement

The individual observer agreement scores ω(i) are shown
in fig. 14, for the indoor (left) and outdoor (right) lighting
estimation methods, for all experiments (rows). The ob-
servers are anonymised by assigning them a random number
and a random order between each experiment (i.e. the ob-
server labelled “1” in the first row is not necessarily the same
observer “1” in the second row), as not all the observers par-
ticipated in the same experiments. The observers labelled as
“P” and “R” correspond to the perfect and random observers
(defined in sec. 5.1. of the main paper), respectively. This
score is how the observers removed from the study are de-
termined (see sec. 5.1. of the main paper for more details).
The orange/blue lines are determined by taking the average
of the individual observer agreement scores ω(i) (excluding
the perfect and random observers), to obtain the expected
observer agreement score (defined in sec. 5.1. of the main
paper).

3. Measuring the scores of the IQA metrics

Additional information regarding the scores of the IQA met-
rics (see sec 5. of the main paper) is provided in this section.
In this subsection we aim analyse the Thurstone Case V
Law of Comparative Judgement z-scores of the individual
metrics, using the same approach as the one used in sec.
4.1. of the main paper, in sec. 3.1. We also compute the
correlation score between the IQA metrics and the observers
in sec. 3.2 using Spearman’s ρ and Kendall’s τ statistical
tests, to confirm the results obtained by the agreement score,
computed in sec. 5.1. of the main paper. We will con-
sider the same metrics as in the main paper RGB angular
error [10], PSNR [12], RMSE, si-RMSE and more recent
ones, such as SSIM [28], VIF [24], LPIPS [31], PieAPP [21],
FLIP [1], HDR-VDP3 [17], BRISQUE [19], NIQE [20],
UNIQUE [32], and HyperIQA [25]. The FID [11] metric is
also studied in sec. 3.3.

3.1. Scores of the IQA metrics

Broadly speaking, our idea is to consider the metrics as if
they were observers in our pair comparison test. In order to
do so, we will perform all the same pair-wise comparisons of
our experiment, and for each comparison, we will assign a 1
to the image that the metric picks as better and a 0 to the other
image. Once we have all the selections, we can compute
the scores for each of the metrics. More in detail, the score



Figure 11. Agreement between the observer scores (expert: yellow left bars; naive: teal right bars) and the metric scores (columns) for all
the indoor lighting estimation methods, for the different types of experiments (rows). The lower horizontal grey bar is set at chance level
(∼0.5) and the higher one corresponds to the perfect observer (set at 1.0). The orange line corresponds to the expected observer agreement
score for all the observers for the indoor methods (same as the one in fig. 5 of the main paper).

is then computed for each metric, for each experiment, the
same way as described in sec. 4.1. of the main paper.

The Thurstone Case V Law of Comparative Judgement
scores obtained for each metric computed on the stimuli
from the indoor (left) and outdoor (right) lighting estimation
methods are shown in fig. 15, for all the experiments. This
figure clearly highlights that the different metrics do not
agree with each other for a given set of images. This fact
reinforces our main arguments in two different ways. Firstly,
it shows that current metrics are not feasible enough as by
selecting a specific metric the ranking of the methods is
also modified. Secondly, it also proves that our approach of
considering an ensemble of different metrics to derive our
new metric is the avenue to pursue.

3.2. Correlation scores between the IQA metrics
and the observers

To study more in-depth the variations of the correlation
between each experiment, the mean Spearman’s ρ and
Kendall’s τ scores are computed over all metrics for the
indoor experiments and shown in tab. 2. As it is possible
to observe, the correlation scores are indeed lower for the
task 2 experiments compared to task 1. The considerably
higher correlation score for the task 1 diffuse experiment
also confirms the trend observed with the agreement score
(fig. 5 of the main paper), with a few metrics agreeing with
human perception.

Table 2. Average Spearman’s ρ and Kendall’s τ correlation scores
for all the metrics, including “Ours”, but excluding “Ours Holdout”
for the Spearman’s ρ and Kendall’s τ tests, for all the indoor exper-
iments.

Spearman’s ρ Kendall’s τ
Task 1 Task 2 Task 1 Task 2

Diffuse 0.305 0.057 0.253 0.047
Glossy 0.134 0.103 0.111 0.085

3.3. Agreement scores between FID and the ob-
servers

The FID metric [11]—commonly used to evaluate genera-
tive models—is not included in our analysis. As a Reduced-
Reference metric, it is computed on a distribution of images
and not on individual images, contrary to the rest of the
metrics considered in this study. Hence, obtaining a value
for each pair of images is impossible. It is impossible to get
the judgement of human perception for a whole distribution
of images due to the prohibitively time-consuming experi-
mental setup used in our study. Despite this, we provide FID
results as an extra analysis following the procedure described
in [6]. FID also contrasts with the other metrics in our study
as it is computed directly on IBLs instead of renders. This is
due to the nature of FID, which starts by feeding the images
to a neural network trained on natural images. We chose to
run it on IBLs to minimise the domain gap of this neural
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Figure 12. Example of the preferences of all the observers of the stimuli generated by the different lighting estimation methods (columns)
ordered decreasingly as a function of their score, for the different types of experiments (rows). The first column is the ground truth (not
judged by the observers) associated to the scene for comparison.

network.
To properly compare the observers’ Thurstone Case V

Law of Comparative Judgement scores with the FID scores,
both scores are normalised, so they have similar scales. The
human scores range from negative to positive values, unlike
FID, so both scores (x′) are mapped between −1 and 1,
using

x′ =
2(x−min{x})

max{x} −min{x}
− 1 , (1)

where x corresponds to the scores. Unlike the human score,
a low FID score indicates a better quality image; thus, the
normalised FID scored is reversed to match the human score.
This means that a method with a value of 1 is considered to be
the best performing method and a value of −1 is considered
the worst performing method. The normalised scores are
presented in fig. 16.

It is important to keep in mind that the scores compared

in fig. 16 are obtained from different stimuli; the scores of
the human observers were obtained on the rendered stimuli,
while the FID is computed directly on the IBLs. This also
implies that the normalised FID scores are the same for all
experiments (rows) in fig. 16. Also, as previously mentioned,
the human scores are obtained for each individual images,
and do not represent a global statistic for the method itself,
as is the case for the FID. It is thus harder to robustly com-
pare the normalised scores from both sources, but it is still
possible to observe general trends. When looking at the sim-
ilarity of the distributions for the human score (green) and
normalised FID scores (pink), the experiments using glossy
materials seem to match better.
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Figure 13. Thurstone Case V Law of Comparative Judgement scores from all the observers for each of the sets of images as a function of the
different lighting estimation methods (columns), for the different types of sphere materials used in the experiments (rows).

4. Learning a metric combination

Additional details on the training of our proposed metrics
(see sec 6.1. of the main paper) are given in sec. 4.1, and a
supplementary analysis of the generalisation psychophysical
study (see sec 6.2. of the main paper) is done in sec. 4.2.

4.1. Formulation and training

In tab. 3, the mean and standard deviation of the training
accuracies for the k-fold approach (k = 10) are displayed,
for various classical learners. The parameters are all the
default values. In some cases, BernoulliNB performs better
than the SVR, however that methods outputs discrete values,
and not a continuous ranking like the SVR, thus this method
is preferred. Regarding the other methods outperforming the
SVRs for specific experiments, the SVR is the method that
performs the best across all experiments. Thus, the SVR is
chosen for uniformity.

A representation of the learnt metric by the SVR is shown
in fig. 17 for the indoor and outdoor validation cases (shown
in “Ours” column of fig. 5 in the main paper) and for the
holdout and new methods generalisation tests in fig. 18
(which corresponds to the “Ours Holdout” column of fig.
5 in the main paper and sec. 6.2. of the main paper, re-
spectively). The projection of the R15 space of the classical
metrics is projected to R2 to illustrate the decision bound-
aries (white lines) of the learnt metrics. The data points with

the black contours indicate data points used in validation and
the grey contours correspond to the support vectors.

4.2. Generalisation to other lighting estimation
methods

All the environment maps generated by the generalisation
lighting estimation methods for the user study are presented
in fig. 19.

The stimuli used in the indoor and outdoor user study, for
the diffuse/glossy experiments, are shown in fig. 20/fig. 21
for task 1 and fig. 22/fig. 23 for task 2.

The scores for all observers for the generalisation lighting
estimation methods are shown in fig. 24. Only Weber et
al. [29] is a method also included in the main psychophysi-
cal study; however, it has never been compared to the new
methods. The methods are described in sec. 6.2. of the main
paper.

Unlike Khan et al. [14], which includes texture but lacks
a proper HDR lighting estimation, the Average method only
includes the average pixel colour of the background image
given as input (sec. 1.2). Thus, it includes no texture nor
lighting estimation. The fact that for all experiments this
method is not preferred demonstrates that excluding texture
and lighting estimation cannot produce accurate (task 1)
nor realistic (task 2) results. We hypothesize that this lack
of texture causes the method to be disliked for the glossy
experiments, as it has been empirically shown in the main
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Figure 14. Agreement between the expected observer scores and the individual observer scores (columns) for all the lighting estimation
methods (indoor: left bars; outdoor: right bars), for the different types of experiments (rows). The lower horizontal grey bar is set at chance
level (labelled as “R”; ∼0.5) and the higher one corresponds to the perfect observer (labelled as “P”; set at 1.0). The orange (indoor) and
blue (outdoor) lines corresponds to the expected observer agreement score.

study with the results from fig. 4 in the main paper for
Gardner et al. [8] and Zhang et al. [30]. However, the naive
approach to lighting estimation from the Average method
is similar to Khan et al. [14], yet the Average method does
not perform well in diffuse spheres, especially on task 2,
like Khan et al. [14]. When comparing the stimuli from
Khan et al. [14] (fig. 5) and the Average method (fig. 22),
it is possible to see that there are low-frequency lighting
variations on the renders done with Khan et al. [14] (e.g.
spatial colour variations), which we believe contribute to the
judgement of plausibility by the observers.

For the same reasons as Gardner et al. [8] and Zhang et
al. [30] in fig. 4 of the main paper, Garon et al. [9] seems
not to be preferred by observers as it lacks textures, adding
empirical evidence that textures are an important part of
lighting estimation, especially for the glossy experiments.

However, it is important to remember that this generalisa-
tion study has been done on a small number of participants
and fewer images, yielding an increased statistical uncer-
tainty. Nevertheless, fig. 9 shows that even with 6 observers,

the general trends do not seem to change much.

References
[1] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Mag-
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Figure 17. Visualisation of the learnt SVR metric for the four different experiments (rows), applied to an indoor/outdoor (columns) validation
dataset. The projection of the fifteen classical metrics to R2 is done using UMAP [18]. The point corresponds to the pair comparisons of the
stimuli (given as input to the network) and the background corresponds to the learnt function by the SVR. The white line corresponds to the
boundary between the left and right choice of image. The colour of the data points and the background correspond to the choice of picking
the left or right image given as input to the metric. The data points with the black contours indicate data points used in validation, and the
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Figure 18. Visualisation of the learnt SVR metric for the four different experiments (rows), applied to the metric trained with the holdout
approach (see sec. 5.1. of the main paper for details) in the left column and for the metric trained for the generalisation test (see sec. 5.2. of
the main paper for details) in the right column. The projection of the fifteen classical metrics to R2 is done using UMAP [18]. The point
correspond to the pair comparisons of the stimuli (given as input to the network) and the background corresponds to the learnt function by
the SVR. The white line corresponds to the boundary between the left and right choice of image. The colour of the data points and the
background correspond to choice of picking the left or right image given as input to the metric. The data points with the black contours
indicate data points used in validation and the grey contours correspond to the support vectors.
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Figure 19. IBLs generated by the different generalisation lighting methods (columns) for each scene (rows). The first column corresponds to
the region extracted from the indoor scene, corresponding to a 50◦ FoV, is taken from the centre of the full GT panorama (for most scenes),
shown in the second column. The IBLs are reexposed and tonemapped with γ = 2.4 for display.
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Figure 20. Stimuli used for the generalisation task 1 experiment with the diffuse sphere. The full HDR panorama (first column) is reexposed
and tonemapped with γ = 2.4 for display. The region extracted from the scene (second column), corresponding to a 50◦ FoV, taken from
the centre of the full panorama (for most scenes). The rendered stimuli using the ground truth IBLs (first columm) are shown in the third
column. The other columns are the rendered stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 21. Stimuli used for the generalisation task 1 experiment with the glossy sphere. The full HDR panorama (first column) is reexposed
and tonemapped with γ = 2.4 for display. The region extracted from the scene (second column), corresponding to a 50◦ FoV, taken from
the centre of the full panorama (for most scenes). The rendered stimuli using the ground truth IBLs (first columm) are shown in the third
column. The other columns are the rendered stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.



E
nv

m
ap

in
do

or

C
ro

p
in

do
or

G
T

in
do

or

W
eb

er
et

al
.[

29
]

E
ve

rL
ig

ht
H

D
[6

]

D
iff

us
io

n
[2

3]

G
ar

on
et

al
.[

9]

A
ve

ra
ge

Figure 22. Stimuli used for the generalisation task 2 experiment with the diffuse sphere. The full HDR panorama (first column) is reexposed
and tonemapped with γ = 2.4 for display. The region extracted from the scene (second column), corresponding to a 50◦ FoV, taken from
the centre of the full panorama (for most scenes). The rendered stimuli using the ground truth IBLs (first columm) are shown in the third
column. The other columns are the rendered stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 23. Stimuli used for the generalisation task 2 experiment with the glossy sphere. The full HDR panorama (first column) is reexposed
and tonemapped with γ = 2.4 for display. The region extracted from the scene (second column), corresponding to a 50◦ FoV, taken from
the centre of the full panorama (for most scenes). The rendered stimuli using the ground truth IBLs (first columm) are shown in the third
column. The other columns are the rendered stimuli using the IBLs (shown in fig. 1) produced by the different lighting estimation methods.
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Figure 24. Thurstone Case V Law of Comparative Judgement
scores from the observers as a function of the different general-
isation lighting estimation methods (columns), for the different
types of sphere materials used in the experiments (rows). Error
bars correspond to 95% confidence interval.
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