000		054
001		055
002		056
003		057
004	Robust Unsupervised StyleGAN Image Restoration	058
005	Supplementary Materials	059
006	Supplementary wraterials	060
007		061
800		062
009	Anonymous CVPR submission	063
010		064
011	Paper ID 8084	065
012		066
013		067
014	This supplementary material presents the following additional information to complement the paper:	800
015	• Sec. 1: a set of ablation experiments on our multi-resolution loss function as well as the normalized gradient descent optimizer;	069
010	• Sec. 3: more details on the entire FEHO X test set (see sec. 6.1 of the main naner):	070
017	See 5. The details on the entrie 1110-X test set (see see, of of the main paper),	071
010	• Sec. 4: Illustration of the degradation levels used in our benchmark (sec. 5.1 of the main paper);	072
020	• Sec. 5: details on the selection of hyperparameters for the PULSE [4] and L-BRGM [1] baselines;	074
021	• Sec. 6: quantification of the impact of our 3-phase latent extension approach;	075
022	• Sec. 7: compares our method to the baselines under the Natural Image Quality Evaluator (NIQE) [5] score;	076
023	• Sec. 8: additional qualitative results to complement figs. 4 and 5 from the main paper:	077
024	• See Or additional qualitative results to comprement rigs. I and 5 from the main paper,	078
025	• Sec. 9. results on other datasets,	079
026	• Sec. 10: high resolution results to better see the differences;	080
027		081
028		082
029		083
030		084
031		085
032		086
033		087
034		080
030		009
030		030
038		092
039		093
040		094
041		095
042		096
043		097
044		098
045		099
046		100
047		101
048		102
049		103
050		104
051		105
052		100
000		107

¹⁰⁸ 1. Ablations

1	12
1	13
1	14
1	15
1	16
1	17
1	18
1	19
1	20
1	21
1	22
1	23
1	24
1	25
1	26
1	27
1	28
1	29
1	30
1	31
1	32
1	33
1	34
1	35
1	36
1	37
1	38
1	39
1	40
1	41
1	42
1	43
1	44
1	45
1	46
1	47
1	48
1	49
1	50
1	51
1	52
1	53

	Acc	ur. (LPIF	PS)↓	Fic	lelity (LP	IPS)↓	Reali	sm (pFII))↓
	MR	256	1024	MR	256	1024	MR	256	1024
U	osampli	ng (biline	ear, bicub	ic or Lanczo	os)				
XS	.414	.432	.397	.313	.323	.278	17.0	28.8	16.1
M	.472	.507	.454	.172	.214	.101	22.3	41.3	25.1
XL	.514	.534	.492	.090	.080	.023	21.3	62.0	21.9
De	enoising	(clamped	d Poisson	and Bernou	lli mixture)			
XS	.425	.430	.433	.156	.167	.147	18.5	26.4	21.0
М	.446	.476	.466	.130	.154	.128	19.8	41.8	27.8
XL	.474	.529	.519	.084	.103	.102	17.9	55.8	26.9
De	eartifact	ing (JPE	G compre	ession)					
XS	.432	.428	.478	.349	.344	.392	14.8	21.2	28.6
М	.445	.450	.504	.357	.360	.413	15.4	24.8	35.1
XL	.490	.535	.584	.412	.446	.510	18.7	63.4	72.6
In	painting	g (randon	n strokes)						
XS	.378	.385	.356	.348	.354	.326	12.9	17.7	17.0
М	.396	.406	.387	.206	.213	.195	14.5	19.6	17.6
XL	.422	.437	.410	.132	.141	.125	15.9	22.5	17.2

Table 1. Ablations comparing performances on all metrics for single degradations, comparing our multi-resolution loss function (columns labeled MR) against an LPIPS loss applied at resolution 256×256 (columns labeled 256) and 1024×1024 (columns labeled 1024). In all cases, an L1 loss with a weight of 0.1 was also used. For upsampling tasks, column 1024 instead shows LPIPS applied at the maximal resolution after downsampling, and column 256 after another 4x downsampling when applicable. The multi-resolution loss function is critical for performance on denoising and deartifacting. For upsampling and inpainting, its use results in a small loss in accuracy in exchange for a (sometimes large) gain in realism. Results are color-coded as best and second best.

Figure 1. Final predictions during XL denoising with the LPIPS loss applied at different resolutions (from top to bottom: MR, 256, 0.9; MR is the multi-resolution loss function proposed in our method). While the prediction with our multi-resolution loss function is not artifact-free, it is much less blurry then the prediction at 1024.

Table 1 shows ablations on our multi-resolution loss function. We compare our proposed loss single degradations at (XL, M, XS) compared to a more standard (VGG) perceptual loss applied at a full resolution and at a fixed (256) resolution (the latter is commonly performed because it is close to VGG's native resolution 224×224). It shows that our multi-resolution loss function is critical for denoising and deartifacting: this is somewhat unsurprising because these degradations damage the high frequencies while

mostly preserving the low frequencies; JPEG compression was *explicitly designed* with this intent. But, it also shows that such losses
 retain good performance for other degradations: it is robust.

	Acc	ur. (LPII	PS)↓	Fide	lity (LPI	PS)↓	Reali	ism (pFII)↓
	0.0	0.5	0.9	0.0	0.5	0.9	0.0	0.5	0.9
U	psampli	ng (bilin	ear, bicub	ic or Lanczos)					
XS	.414	.397	.375	.313	.282	.236	17.0	19.8	22.6
М	.472	.473	.484	.172	.135	.106	22.3	33.2	50.2
XL	.514	.492	.495	.090	.074	.055	21.3	18.8	20.9
De	enoising	(clamped	d Poisson	and Bernoulli	mixture)				
XS	.425	.413	.409	.156	.143	.131	18.5	21.6	26.9
М	.446	.444	.452	.130	.120	.114	19.8	25.4	37.2
XL	.474	.471	.489	.084	.077	.076	17.9	21.8	38.8
De	eartifact	ting (JPE	G compre	ession)					
XS	.432	.414	.391	.349	.324	.291	14.8	15.7	18.1
М	.445	.432	.417	.357	.332	.300	15.4	17.3	21.5
XL	.490	.491	.500	.412	.392	.381	18.7	26.6	45.1
In	painting	g (randon	n strokes)						
XS	.378	.353	.319	.348	.325	.293	12.9	13.0	13.8
М	.396	.382	.355	.206	.190	.170	14.5	15.3	17.6
XL	.422	.405	.392	.132	.124	.105	15.9	17.3	20.9

Table 2. Ablations comparing performances on all metrics for single degradations, comparing our optimizer without (columns labeled 0.0) and with momentum at values 0.5 and 0.9 (columns labeled 0.5 and 0.9, respectively). Results are color-coded as best and second best. While momentum improves fidelity and, in many cases, accuracy, it results in a severe degradation in realism, especially for non-linear tasks such as inpainting and denoising.

Table 2 shows ablations for our normalized gradient descent optimizer. Recall that the Adam optimizer takes steps proportional to the value obtained by normalizing an elementwise running average the gradient's first moment (momentum) with an elementwise running average of its second moment. We show show that including just momentum (at values 0.5 and 0.9) leads to a degradation in realism. In other words, even a minimal attempts at moving our optimizer closer to Adam results in a severe degradation in realism.

Figure 2. Final predictions during XL deartifacting for different momentum levels (from top to bottom: 0.0, 0.5, 0.9; 0.0 is the value proposed in our method). Adding momentum results in a severe degradation in realism.

2. Additional comparison to denoising diffusion restoration models (DDRM) The main advantage of image restoration with StyleGAN inversion is that, since the latter is gradient based, it can handle non-linear degradation easily while DDRM cannot. Besides, this section gives some additional comparisons to DDRM for uncropping, and attempts to explain its high accuracy scores. For inpainting we can decompose the accuracy into two parts, provided that it is measured with an L1 norm: the fidelity (measuring if the degraded prediction matches the target), and its complement that we will dub the authenticity (measuring if what is absent from the target is correctly inferred by the prediction). More concretely, authenticity measures the distance between the masked part of the ground truth and the prediction. Recalling that x_{clean} denotes the prediction and that y_{clean} denotes the ground truth, for a (linear) masking degradation H we have: $\operatorname{accuracy}_{L1}(\boldsymbol{x}_{clean}, \boldsymbol{y}_{clean}) = |\boldsymbol{x}_{clean} - \boldsymbol{y}_{clean}| = \operatorname{fidelity}_{L1}(\boldsymbol{x}_{clean}, \boldsymbol{y}_{clean}) + \operatorname{authenticity}_{L1}(\boldsymbol{x}_{clean}, \boldsymbol{y}_{clean})$ where fidelity_{L1}($\boldsymbol{x}_{clean}, \boldsymbol{y}_{clean}$) = $|H\boldsymbol{x}_{clean} - H\boldsymbol{y}_{clean}|$ authenticity_{L1} $(\boldsymbol{x}_{clean}, \boldsymbol{y}_{clean}) = |(I - H)\boldsymbol{x}_{clean} - (I - H)\boldsymbol{y}_{clean}|.$ Results for uncropping are shown in table X with these new metrics. These results show that DDRM obtains high accuracy because it fidelity is excellent, but that it struggles with authenticity, meaning that it fails to infer beyond this. In figure Y, we give more results on uncropping, which shows this well: DDRM perfectly reproduces the provided crop, but struggles to infer the missing part. In contrast, StyleGAN-based image restoration is much better at doing so. Accuracy (L1) ↓ Fidelity (L1) \downarrow Authenticity $(L1)\downarrow$ DDRM Ours DDRM Ours DDRM Ours Uncropping (top left corner unmasked) 0.16721 0.12120 0.00101 0.00826 0.16620 0.11343 Table 3. Quantitative comparison to DDRM [3] on L1 accuracy, fidelity, and authenticity. Results are color-coded as best.

432	
433	
434	
435	
436	
437	
438	
/30	
435	
440	
440	
442	
443	
444	
440	
440	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	Figure 4 DDPA
483	degradations (top

Figure 3. DDRM struggles to generalize when the signal is very faint.

Figure 4. DDRM has near-perfect fidelity when degradations are low but yields unrealistic (blurry) predictions under high
 degradations (top: XS additive gaussian noise, bottom: XL addititive gaussian noise). StyleGAN generates a realistic image but
 poorly fitting image.

3. Dataset collection

The pretrained FFHQ networks are trained on all 70k FFHQ images, leaving none for testing. For this reason, we collect an additional 100 images (50 men and 50 women) by scraping Flickr for portrait images uploaded after 2020 (ensuring that they were not part of the original training set). In detail, we scraped 1k images using the query "portrait man" and 1k images using the query "portrait woman". After running the facial alignment script, we discarded all images with: low resolution, noise, blur or visible JPEG compression; extremely unnatural lighting; pure white or pure black background; facial obstructions; black and white coloration; nudity; too little padding around the head. Of the remaining images, we kept 50 for each class by manually selecting for diversity. **Diversity** As with the original FFHQ dataset, where 69.2% of all images are of white people [2], our dataset is biased by the distribution naturally present in Flickr images. Our method also inherits the bias present in StyleGAN; refer to PULSE [4] and for a more in-depth discussion.

Figure 5. All 100 test images of our FFHQ-X test dataset. All images were scraped from Flickr and have a resolution 1024×1024 .

4. Degradation levels

Fig. 6 below illustrates the degradation levels used in our benchmark.

Figure 6. All degradation levels used in our benchmark (from left to right: XS, S, M, L, XL; from top to bottom: upsampling, denoising, deartifacting, and inpainting). Please note that all images have native resolution 1024×1024 ; inlays (bottom-left of each image) magnify $4 \times a$ small 32×32 crop near the left eye. Please zoom in to better appreciate the levels.

⁷⁵⁶5. Hyperparameter search

758 5.1. PULSE

PULSE's main regularization hyperparameter is the geocross term λ_{geo} which constrains the geodisc distance between all 18 latent codes in W^+ . To account for our change of the network and the introduction of new tasks we first increased the number of steps from 100 to 250 and adjusted the learning rate to 0.8 after manual inspection on validation data. We then ran our benchmark on a range of 8 hyperparameter values $\lambda_{reg} = \{0.0, 0.001, 0.01, 0.05, 0.15, 0.3, 0.5, 1.5\}$ directly on the test set, retaining the parameter values with the best accuracy for each (task, level) pair. Note that the original paper proposes the value 0.05 and but that most retained values were in $\{0.001, 0.01\}$.

$\lambda_{ m geo}$	0.0	0.001	0.01	0.05	0.15	0.3	0.5	1.5
upsampling/XS	0.5059	0.5011	0.4926	0.4958	0.5049	0.5079	0.5119	0.5222
upsampling/S	0.5041	0.4966	0.4920	0.4972	0.5043	0.5104	0.5132	0.5240
upsampling/M	0.5036	0.4979	0.4953	0.4999	0.5063	0.5124	0.5192	0.5251
upsampling/L	0.5102	0.5058	0.5028	0.5015	0.5103	0.5182	0.5206	0.5274
upsampling/XL	0.5223	0.5153	0.5121	0.5151	0.5199	0.5208	0.5209	0.5306
denoising/XS	0.5083	0.5008	0.5051	0.5113	0.5191	0.5244	0.5313	0.5615
denoising/S	0.5085	0.4989	0.5025	0.5129	0.5198	0.5241	0.5326	0.5621
denoising/M	0.5100	0.5000	0.5033	0.5141	0.5210	0.5251	0.5339	0.5645
denoising/L	0.5103	0.5015	0.5043	0.5101	0.5217	0.5316	0.5391	0.5743
denoising/XL	0.5208	0.5044	0.5110	0.5209	0.5293	0.5487	0.5587	0.5991
deartifacting/XS	0.5057	0.4984	0.4994	0.5041	0.5145	0.5187	0.5235	0.5427
deartifacting/S	0.5055	0.4975	0.4996	0.5059	0.5173	0.5206	0.5245	0.5402
deartifacting/M	0.5096	0.5003	0.4981	0.5087	0.5176	0.5215	0.5239	0.5443
deartifacting/L	0.5131	0.5005	0.5018	0.5113	0.5176	0.5225	0.5276	0.5419
deartifacting/XL	0.5233	0.5129	0.5085	0.5166	0.5246	0.5289	0.5302	0.5457
inpainting/XS	0.5079	0.5048	0.4981	0.4997	0.5077	0.5123	0.5155	0.5230
inpainting/S	0.5145	0.5057	0.5009	0.5034	0.5120	0.5143	0.5203	0.5303
inpainting/M	0.5231	0.5125	0.5088	0.5122	0.5143	0.5204	0.5245	0.5380
inpainting/L	0.5278	0.5182	0.5128	0.5148	0.5234	0.5286	0.5266	0.5452
inpainting/XL	0.5378	0.5238	0.5246	0.5253	0.5301	0.5331	0.5345	0.5519

Table 4. Accuracies (LPIPS) in single tasks for PULSE at all hyperparameter values. Best accuracies are marked as best and default hyperparameter values as default.

$\lambda_{ m geo}$	0.0	0.001	0.01	0.05	0.15	0.3	0.5	1.5
NA	0.5289	0.5167	0.5225	0.5311	0.5402	0.5536	0.5704	0.6038
AP	0.5227	0.5129	0.5108	0.5186	0.5278	0.5335	0.5380	0.5624
UA	0.5254	0.5151	0.5097	0.5165	0.5239	0.5269	0.5302	0.5488
NP	0.5234	0.5109	0.5110	0.5220	0.5311	0.5406	0.5509	0.5922
UN	0.5148	0.5006	0.5018	0.5132	0.5195	0.5303	0.5407	0.5690
UP	0.5275	0.5136	0.5105	0.5135	0.5185	0.5239	0.5276	0.5405
UNP	0.5290	0.5098	0.5163	0.5273	0.5312	0.5414	0.5535	0.5867
UAP	0.5380	0.5279	0.5253	0.5299	0.5387	0.5389	0.5418	0.5672
UNA	0.5427	0.5212	0.5284	0.5392	0.5484	0.5592	0.5744	0.6059
NAP	0.5384	0.5258	0.5329	0.5422	0.5553	0.5719	0.5878	0.6228
UNAP	0.5573	0.5330	0.5384	0.5496	0.5614	0.5799	0.5939	0.6245

Table 5. Accuracies (LPIPS) in composed tasks for PULSE at all hyperparameter values (composed tasks). Best accuracies are marked as best and default hyperparameter values as default.

5.2. L-BRGM

L-BRGM main regularization hyperparameters are λ_{lat} and λ_{map} , which respectively constrain the optimization to stay near the mean in \mathcal{Z} space and the \mathcal{W}^+ extension to be as minimal as possible. To account for our change of the network and the introduction of new tasks we first adjust the learning rate to 0.05, again after manual inspection on validation data. L-BRGM uses best-of-k random initialization; because initialization is difficult under high degradations, we doubled the number of samples from 100 to 200 and added a 0.8 truncation to avoid outliers. L-BRGM also performs early-stopping by inspecting the ground truth; for a fair comparison, we instead fixed the number of steps to 500, the value used in BRGM. We then ran our benchmark on the full test set for 12 hyperparameter value pairs

$$\begin{pmatrix} \lambda_{map} \\ \lambda_{lat} \end{pmatrix} = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0.01 \\ 0.0001 \end{pmatrix}, \begin{pmatrix} 0.1 \\ 0.001 \end{pmatrix}, \begin{pmatrix} 1.0 \\ 0.001 \end{pmatrix}, \begin{pmatrix} 1.0 \\ 0.01 \end{pmatrix}, \begin{pmatrix} 5 \\ 0.05 \end{pmatrix}, \begin{pmatrix} 5 \\ 0.01 \end{pmatrix}, \begin{pmatrix} 15 \\ 0.2 \end{pmatrix}, \begin{pmatrix} 30 \\ 0.2 \end{pmatrix}, \begin{pmatrix} 30 \\ 0.4 \end{pmatrix}, \begin{pmatrix} 60 \\ 0.8 \end{pmatrix}, \begin{pmatrix} 90 \\ 1.6 \end{pmatrix} \}, \begin{pmatrix} 10 \\ 0.8 \end{pmatrix}, \begin{pmatrix} 1$$

ratai	ning the personat	ar volua	with the	best acc	uracy fo	r anch (te	nek laval) noir					
Ictan	ining the paramet	er values	with the		uracy 10	i eacii (ta	isk, ievei) pan.					
	λ_{map}	0.0	0.01	0.1	1	1	5	5	15	30	30	60	90
	λ_{lat}	0.0	0.0001	0.001	.001	0.01	0.01	0.05	0.2	0.2	0.4	0.8	1.6
	upsampling/XS	0.4123	0.4097	0.4074	0.4122	0.4112	0.4269	0.4241	0.4430	0.4518	0.4538	0.4644	0.4718
	upsampling/S	0.4157	0.4157	0.4125	0.4149	0.4155	0.4268	0.4303	0.4442	0.4577	0.4547	0.4683	0.4735
	upsampling/L	0.4662	0.4621	0.4007	0.4391	0.4383	0.4396	0.4813	0.4719	0.4792	0.4782	0.4876	0.4902
	upsampling/XL	0.5596	0.5582	0.5437	0.5287	0.5324	0.5196	0.5125	0.5095	0.5060	0.5106	0.5144	0.5172
	denoising/XS denoising/S	0.4429 0.4561	0.4434 0.4538	0.4402 0.4501	0.4488 0.4572	0.4496 0.4554	0.4651 0.4736	0.4652 0.4734	0.4827 0.4892	0.4942	0.4975 0.5017	0.5072	0.5157
	denoising/M	0.4696	0.4666	0.4653	0.4660	0.4648	0.4803	0.4828	0.4977	0.5084	0.5089	0.5195	0.5273
	denoising/L denoising/XL	0.4931	0.4897	0.4853	0.4815	0.4814	0.4940	0.4928	0.5066	0.5198	0.5235	0.5327	0.5444
	deartifacting/XS	0.4417	0.4429	0.4422	0.4513	0.4520	0.4729	0.4763	0.4864	0.4959	0.4974	0.5066	0.5101
	deartifacting/S deartifacting/M	0.4510	0.4500	0.4482	0.4569	0.4577	0.4781	0.4777	0.4915	0.4954	0.5008	0.5098	0.5151
	deartifacting/L	0.4877	0.4824	0.4755	0.4770	0.4776	0.4922	0.4925	0.5023	0.5078	0.5105	0.5179	0.5219
	deartifacting/XL	0.5265	0.5283	0.5179	0.5044	0.5032	0.5074	0.5046	0.5114	0.5237	0.5250	0.5303	0.5351
	inpainting/S	0.4268	0.4249	0.4249	0.4278	0.4299	0.4378	0.4387	0.4518	0.4606	0.4633	0.4735	0.4794
	inpainting/M	0.4400	0.4389	0.4384	0.4402	0.4412	0.4506	0.4480	0.4609	0.4670	0.4706	0.4810	0.4847
	inpainting/XL	0.4697	0.4691	0.4626	0.4653	0.4601	0.4693	0.4673	0.4779	0.4870	0.4847	0.4930	0.5006

 Table 6. Accuracies (LPIPS) in composed tasks for L-BRGM at all hyperparameter values (single tasks). Best accuracies are marked

 as
 best

 and default hyperparameter values as

 default

$\lambda_{map} \ \lambda_{lat}$	0.0 0.0	0.01 0.0001	0.1 0.001	1 .001	1 0.01	5 0.01	5 0.05	15 0.2	30 0.2	30 0.4	60 0.8	90 1.6
NA	0.5068	0.4990	0.4848	0.4875	0.4876	0.5068	0.5072	0.5217	0.5357	0.5354	0.5504	0.5560
AP	0.4903	0.4871	0.4807	0.4784	0.4796	0.4913	0.4916	0.5077	0.5168	0.5132	0.5212	0.5292
UA	0.6237	0.6235	0.5893	0.5316	0.5301	0.5185	0.5207	0.5206	0.5248	0.5265	0.5328	0.5374
NP	0.4933	0.4908	0.4856	0.4798	0.4816	0.4898	0.4946	0.5100	0.5206	0.5188	0.5363	0.5397
UN	0.5589	0.5531	0.5407	0.5195	0.5190	0.5250	0.5246	0.5378	0.5471	0.5480	0.5638	0.5753
UP	0.4958	0.4922	0.4870	0.4814	0.4778	0.4857	0.4847	0.4917	0.5013	0.4951	0.5040	0.5094
UNP	0.5823	0.5744	0.5511	0.5318	0.5258	0.5347	0.5338	0.5520	0.5676	0.5683	0.5765	0.5876
UAP	0.6305	0.6219	0.5834	0.5364	0.5346	0.5265	0.5231	0.5307	0.5348	0.5374	0.5451	0.5546
UNA	0.6235	0.5999	0.5662	0.5353	0.5351	0.5498	0.5490	0.5643	0.5759	0.5760	0.5927	0.6022
NAP	0.5257	0.5128	0.5029	0.5016	0.5018	0.5178	0.5201	0.5407	0.5523	0.5499	0.5655	0.5717
UNAP	0.6372	0.6026	0.5668	0.5463	0.5488	0.5651	0.5712	0.5847	0.5987	0.5972	0.6167	0.6188

Table 7. Accuracies (LPIPS) in composed tasks for L-BRGM at all hyperparameter values (composed tasks). Best accuracies are marked as best and default hyperparameter values as default .

Figure 7. Visualization of the hyperparameter search: the first row shows the ground truth and the target; the second row gives
the predictions for PULSE at all hyperparameter values; the third row gives the same for L-BRGM. The predictions with the best
accuracies for both methods are bordered in orange while the predictions obtained with the default hyperparameters are bordered in
green. Note that, for both methods, obtaining high accuracy results in poor realism.

9729736. Robustness of latent extension

See fig. 8 for qualitative results on denoising.

	Ac	cur. (LPI	PS)↓	Fide	elity (LP	IPS)↓	Real	ism (pFI	D)↓
	\mathcal{W}	\mathcal{W}^+	\mathcal{W}^{++}	\mathcal{W}	\mathcal{W}^+	\mathcal{W}^{++}	\mathcal{W}	\mathcal{W}^+	\mathcal{W}^{++}
U	psampli	ng (biline	ear, bicubic	or Lanczos)					
XS	.480	.457	.414	.423	.387	.313	18.4	17.1	17.0
S	.496	.479	.449	.360	.318	.239	18.6	19.4	22.0
M	.507	.493	.472	.291	.246	.172	18.2	19.1	22.3
L	.523	.508	.490	.230	.186	.127	19.8	18.7	20.9
XL	.540	.525	.514	.168	.130	.090	22.8	20.4	21.3
De	enoising	(clamped	l Poisson a	nd Bernoulli m	nixture)				
XS	.484	.464	.425	.221	.199	.156	18.1	17.7	18.5
S	.488	.469	.434	.201	.179	.140	18.2	17.9	19.1
М	.492	.476	.446	.189	.168	.130	18.3	18.2	19.8
L	.500	.484	.457	.164	.143	.110	18.6	17.8	19.2
XL	.515	.498	.474	.121	.107	.084	19.1	17.9	17.9
De	eartifact	ing (JPE	G compres	sion)					
XS	.489	.470	.432	.421	.398	.349	17.9	16.5	14.8
S	.491	.474	.437	.421	.400	.350	17.7	16.0	15.4
М	.495	.478	.445	.427	.407	.357	17.5	15.9	15.4
L	.500	.485	.460	.434	.415	.374	18.6	16.6	16.0
XL	.519	.507	.490	.469	.453	.412	18.8	17.1	18.7
In	painting	g (random	n strokes)						
XS	.462	.433	.378	.430	.402	.348	16.5	14.2	12.9
S	.464	.436	.387	.332	.308	.264	17.3	15.4	14.2
М	.468	.442	.396	.264	.243	.206	17.5	15.1	14.5
L	.475	.450	.409	.212	.194	.163	17.5	15.6	15.3
XL	.483	.460	.422	.173	.159	.132	18.0	16.3	15.9

Table 8. All metrics for all single degradations for each phase. Results color-coded as best and second best. The W^{++} phase consistently obtains the best accuracy and fidelity, although it leads to a slight degradation in realism in certain cases (namely denoising and upsampling). Interestingly, in inpainting, realism consistently improves across phases.

	Ac	cur. (LPI	PS)↓	Fide	elity (LP	IPS)↓	Real	lism (pFl	D)↓
	\mathcal{W}	\mathcal{W}^+	\mathcal{W}^{++}	\mathcal{W}	\mathcal{W}^+	\mathcal{W}^{++}	\mathcal{W}	\mathcal{W}^+	\mathcal{W}^{++}
2 deg	radatio	ns							
NA	.500	.486	.459	.362	.338	.290	18.2	16.6	17.3
AP	.504	.487	.457	.253	.238	.204	20.1	18.1	17.0
UA	.534	.523	.508	.392	.356	.287	21.2	19.4	19.7
NP	.502	.484	.458	.097	.085	.062	19.4	18.0	19.2
UN	.536	.524	.511	.218	.192	.153	22.3	20.8	21.1
UP	.515	.502	.485	.157	.134	.089	19.8	18.3	20.7
3 deg	radatio	ns							
UNP	.532	.519	.507	.084	.070	.051	21.8	20.0	20.1
UAP	.534	.524	.513	.178	.158	.119	22.2	20.3	20.5
UNA	.548	.540	.533	.360	.333	.290	25.3	22.7	22.8
NAP	.509	.493	.470	.212	.194	.160	20.4	18.4	18.5
4 deg	radatio	ns							
UNAP	.543	.533	.525	.180	.160	.131	24.3	22.1	21.8

Table 9. All metrics for all composed degradations for each phase. Results color-coded as best and second best. The W^{++} phase consistently obtains the best accuracy and fidelity. Realism is mostly preserved across all tasks (the W^{++} scores are very close to the W^{+} scores), except for composed upsampling and denoising.

1129

1130

1131

1132

1133

Figure 8. Predictions for denoising (left column: XS, right column: XL) at the end of each phase, for a hand-picked image. The first and second rows give the ground truth and target images, while the last three rows give the predictions for each phase (top to bottom: W^{++} , W^+ , W). As shown in this figure, the earlier phases give realistic but inaccurate predictions—they are unable to closely match the target even when the degradation levels are very low, while the W^{++} extension finds a close albeit imperfect match. With our proposed optimizer and loss function, W^{++} extension remains realistic even when the levels are very high (third row, second column).

1185 1186 1187

1182

1183

¹¹⁸⁸ 7. NIQE scores

1100							10
1189							124
1190							124
1191			DULC	NIQE \downarrow	OUDS		124
1192			PULS	L-BKG	OURS		124
1193		U	psampling	2 00710	2.072(7		124
1194		XL I	3.469/5	2.99/18	3.0/36/		124
1195		L M	2.96611	3.08266	2.98017		124
1196		S	2.87300	3.12542	2.89456		12
1197		XS	2.73831	3.05527	2.84786		12
1198		De	enoising				12
1199		XL	3.65306	3.38110	3.03496		12
1200		L	3.66355	3.38293	3.00178		12
201		M	3.68114	3.25477	3.05595		12
202		XS	3.50100	3.10698	2.99727		12
203		D	artifacting				12
204		XL.	3.31883	3.21646	3 01557		12
205		L	3.25669	3.21580	3.01792		12
206		М	3.11149	3.14421	3.01310		12
207		S	3.20801	3.08838	2.98830		12
208		<u>XS</u>	3.05744	2.98099	2.89791		120
209		In	painting	0.01(00	0.14570		12
210		XL	3.61890	3.01630	3.14573		12
211		L M	3.48374	3.05570	3.14987		12
212		S	3.32579	2.96624	3.16195		12
213		XS	3.38315	3.05658	3.16246		12
1210							10
214	Table 10. Quantitative comparison of the	e NIQE [5]	scores on	individual	tasks agai	nst baselines ("PULS" [4] and "L-BRG" [1]).	12
1215							12
1210							12
1217							12
210							12
219							12
220							12
221							12
222							12
223							12
224							12
225							12
226							12
227							12
228							12
229							12
230							12
231							12
232							12
233							12
234							12
235							12
236							12
237							12
238							12
239							12
240							12
1241							12

CVPR #8084

8. Additional results

Deartifacting

Inpainting

Figure 9. Additional results for all single restoration tasks showing all degradation levels. Each figure shows the same 128×128 crop at the top left of a randomly selected FFHQX images image.

CVPR #8084

 Image: Sector sector

Figure 10. Overview of StyleGAN image restoration on composed upsampling and deartifacting with a hand-picked example. From left to right: ground truth y_{clean} , target y, error |x - y|, degraded prediction x, prediction x_{clean} .

Figure 11. Additional results for composed degradations, where the same ground truth was used for all targets.

9. Other datasets

Figure 12. Qualitative results on all composed degradations ("UNAP") for five images of AFHQ cats (left), AFHQ dogs (middle), and AFHQ wild (right). In all cases, we used the *StyleGAN2-ada* networks pretrained on each respective dataset with *no hyperparameter adjustment*. Please note that these generative models were trained on *both the training and the test sets*; as such the ground truths for these targets were seen during (pre)training.

CVPR

CVPR 2023 Submission #8084. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1620	10. High resolution	1674
1621		1675
1622	See the figures below for results shown in high resolution to better show details.	1676
1623		1677
1624		1678
1625		1679
1626		1680
1627		1681
1628		1682
1629		1683
1630		1684
1631		1685
1632		1686
1033		1687
1034		1000
1626		1609
1627		1690
1629		1603
1630		1692
1640		1693
1641		1695
1642		1696
1643		1697
1644		1698
1645		1699
1646		1700
1647		1701
1648		1702
1649		1703
1650		1704
1651		1705
1652		1706
1653		1707
1654		1708
1655		1709
1656		1710
1657		1711
1658		1712
1659		1713
1660		1714
1661		1715
1662		1716
1663		1717
1664		1718
1665		1719
1666		1720
1667		1721
1668		1722
1669		1723
1670		1724
1671		1725
1672		1726
10/3		1/2/

Figure 13. Additional results for upsampling shown in high resolution (images were restored normally then sliced horizontally) on random FFHQX images. Top: extra-high (XL), middle: medium (M), bottom: extra-small (XS).

CVPR #8084

Figure 14. Additional results for denoising shown in high resolution (images were restored normally then sliced horizontally) on random FFHQX images. Top: extra-high (XL), middle: medium (M), bottom: extra-small (XS).

Figure 15. Additional results for deartifacting shown in high resolution (images were restored normally then sliced horizontally) on random FFHQX images. Top: extra-high (XL), middle: medium (M), bottom: extra-small (XS).

Figure 16. Additional results for inpainting shown in high resolution (images were restored normally then sliced horizontally) on random FFHQX images. Top: extra-high (XL), middle: medium (M), bottom: extra-small (XS).

Figure 17. Additional, high resolution results for three composed tasks (images were restored normally then sliced horizontally) on random FFHQX images. From top to bottom: denoising with deartifacting; deartifacting with inpainting; upsampling with deartifacting.

Figure 18. Additional, high resolution results for three composed tasks (images were restored normally then sliced horizontally) on random FFHQX images. From top to bottom: denoising with inpainting; upsampling with denoising; upsampling with inpainting.

Figure 19. Additional, high resolution results for three composed tasks (images were restored normally then sliced horizontally) on random FFHQX images. From top to bottom: upsampling with denoising and inpainting; upsampling with denoising and deartifacting.

Figure 20. Additional, high resolution results for two composed tasks (images were restored normally then sliced horizontally) on random FFHQX images. From top to bottom: denoising with deartifacting and inpainting; all four tasks (upsampling, denoising, deartifacting, and inpainting).

Figure 21. Restoration for selected examples (left half: target, right half: prediction) show in high resolution (in reading order: upsampling, denoising, deartifacting, and inpainting).

Figure 22. Full resolution composed restoration of all four degradations (upsampling, denoising, deartifacting, and inpainting) for a selected example (left half: target, right half: prediction).

2808	References	2862
2809		2863
2810	[1] Arthur Conmy, Subhadip Mukherjee, and Carola-Bibiane Schönlieb. Stylegan-induced data-driven regularization for inverse	2864
2811	problems. In Int. Conf. Acous. Sp. Sig. Proc., 2022. 1, 12	2865
2812	[2] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In <i>IEEE</i>	2866
2813	Conf. Comput. Vis. Pattern Recog., 2019. 6	2867
2814	[3] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models. In Adv. Neural Inform.	2868
2815	Process. Syst., 2022. 4	2869
2816	[4] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhii Ravi, and Cynthia Rudin. Pulse: Self-supervised photo upsampling via latent space exploration of generative models. In <i>IEEE Conf. Comput. Vis. Pattern Recog.</i> 2020, 1, 6, 12	2870
2817	[5] Anish Mittal Baijy Soundararajan and Alan C Boyik. Making a "completely blind" image quality analyzer. <i>IEEE Signal</i>	2871
2818	Processing Letters 20(3):209–212 2013 1 12	2872
2819		2873
2820		2874
2821		2875
2822		2876
2823		2877
2824		2878
2825		2879
2826		2880
2827		2881
2828		2882
2829		2883
2830		2884
2831		2885
2832		2886
2833		2887
2834		2888
2835		2889
2836		2890
2837		2891
2838		2892
2839		2893
2840		2894
2841		2895
2842		2896
2843		2897
2844		2898
2845		2899
2840		2900
2847		2901
2040		2902
2049		2903
2000		2904
2001		2905
2002		2906
2003		2907