

SetFeat

- it is common practice to extract a single feature vector per input image
- we propose set-feature extractor (SetFeat) to represent images as *sets* of feature vectors

- we take inspiration from Feature Pyramid Networks to learn a richer feature space
- SetFeat embeds shallow self-attention mappers in existing architecture

• for attention map, we first compute

 $\boldsymbol{\beta}_m = \operatorname{Softmax} \left(q(\mathbf{z}_{b_m} | \boldsymbol{\theta}_m^q) k(\mathbf{z}_{b_m} | \boldsymbol{\theta}_m^k)^\top / \sqrt{d_k} \right) ,$ where $\boldsymbol{\beta}_m \in \mathbb{R}^{P \times P}$

• then, we compute the attention over β_m

 $\mathbf{a}_m = \boldsymbol{\beta}_m \, v(\mathbf{z}_{b_m} | \boldsymbol{\theta}_m^v) \,,$

where $\mathbf{a}_m \in \mathbb{R}^{P \times D^a}$ consists of *P* patches

Matching Feature Sets for Few-Shot Image Classification Arman Afrasiyabi**, Hugo Larochelle**, Jean-François Lalonde*, Christian Gagné*** *Université Laval, ^oGoogle Brain, [†]Canada CIFAR Al Chair, •Mila

https://lvsn.github.io/SetFeat/

b) Set matching (ours)

SET-TO-SET METRICS

- SetFeat first extracts sets of features
- then, we need a set-to-set metric to compare the feature set of the query with the feature sets corresponding to each instance of the support set of each class

$$d_{\mathrm{ms}}(\mathbf{x}_q, \mathcal{S}^n) = \sum_{i=1}^M d\left(\mathbf{h}_i(\mathbf{x}_q), \bar{\mathbf{h}}_i(\mathcal{S}^n)\right).$$

• Min-min uses the minimum distance across all possible pairs of elements

$$d_{\mathrm{mm}}(\mathbf{x}_q, \mathcal{S}^n) = \min_{i=1}^{M} \min_{j=1}^{M} d\left(\mathbf{h}_i(\mathbf{x}_q), \bar{\mathbf{h}}_j(\mathcal{S}^n)\right).$$

• **Sum-min** aggregates with a sum the minimum distances between the mappers

$$d_{\rm sm}(\mathbf{x}_q, \mathcal{S}^n) = \sum_{i=1}^M \min_{j=1}^M d\left(\mathbf{h}_i(\mathbf{x}_q), \bar{\mathbf{h}}_j(\mathcal{S}^n)\right)$$

• illustration of our set-to-set metric

EVALUATIONS

• MiniImageNet evaluations of SetFeat4 results in +2.03% improvement in 1-shot

Table 1. Evaluation on miniImageNet in 5-way. Bold/blue is best/second, and \pm is the 95% confidence intervals in 600 episodes.

Me	thod	Backbone	1-shot	5-shot
Pro	toNet [50]		$49.42{\scriptstyle\pm0.78}$	68.20 ± 0.66
MA	ML [18]		$48.07{\scriptstyle\pm1.75}$	$63.15{\scriptstyle\pm0.91}$
Rel	ationNet [53]		$50.44{\scriptstyle\pm0.82}$	$65.32{\scriptstyle\pm0.70}$
Bas	seline++ [8]	 +	$48.24{\scriptstyle\pm0.75}$	$66.43{\scriptstyle\pm0.63}$
IM]	P [3]		$49.60{\scriptstyle\pm0.80}$	$68.10{\scriptstyle\pm0.80}$
Me	moryNet [7]	nv4	$53.37{\scriptstyle\pm0.48}$	$66.97{\scriptstyle\pm0.35}$
Neg	g-Margin [35]	Col	$52.84{\scriptstyle\pm0.76}$	$70.41{\scriptstyle\pm0.66}$
Miz	xtFSL [2]		$52.82{\scriptstyle\pm0.63}$	$70.67{\scriptstyle\pm0.57}$
FE.	AT [68]		$55.15{\scriptstyle\pm0.20}$	$71.61{\scriptstyle\pm0.16}$
ME	LR [16]		$55.35{\scriptstyle\pm0.43}$	$72.27{\scriptstyle\pm0.35}$
BO	IL [39]		$49.61{\scriptstyle \pm 0.16}$	$66.45{\scriptstyle\pm0.37}$
¦ Ma	tch-sum	7	$55.74{\pm}0.65$	72.18 ± 0.70
J Min	n-min	4-6	$56.22{\pm}0.89$	$72.70{\pm}0.65$
\int Sur	n-min	SF	$57.18{\scriptstyle\pm0.89}$	$\textbf{73.67}{\scriptstyle \pm 0.71}$

• TieredImageNet evaluation of SetFeat12 results in +1.42% improvement in 1-shot

Table 2. TieredImageNet evaluation. Bold/red is best/second best, and \pm indicates the 95% conf. intervals over 600 episodes of 5-way.

	Method	Backbone	1-shot	5-shot
	OptNet [31]		65.99 ± 0.72	81.56±0.53
	MTL [52]		$65.62{\scriptstyle\pm1.80}$	$80.61{\scriptstyle\pm0.90}$
	DNS [48]		$66.22{\scriptstyle\pm0.75}$	$82.79{\scriptstyle\pm0.48}$
	Simple [55]		$69.74{\scriptstyle\pm0.72}$	$84.41{\scriptstyle\pm0.55}$
	TapNet [70]	2	$63.08{\scriptstyle\pm0.15}$	80.26 ± 0.12
	ProtoNet [†] [50]	et1)	$68.23 {\pm} 0.23$	$84.03{\scriptstyle\pm0.16}$
	FEAT [68]	sNe	70.80 ± 0.23	$84.79{\scriptstyle\pm0.16}$
	MixtFSL [2]	Re	$70.97{\scriptstyle\pm1.03}$	$86.16{\scriptstyle \pm 0.67}$
	Distill [55]		$71.52{\scriptstyle\pm0.69}$	$86.03{\scriptstyle\pm0.49}$
	DeepEMD [74]		71.16 ± 0.87	$86.03{\scriptstyle\pm0.58}$
	DMF [66]		$71.89{\scriptstyle\pm0.52}$	$85.96{\scriptstyle\pm0.35}$
	MELR [16]		$72.14{\scriptstyle\pm0.51}$	$87.01{\scriptstyle\pm0.35}$
	Distill [45]		$72.21{\scriptstyle\pm0.90}$	$87.08{\scriptstyle\pm0.58}$
	Match-sum		71.22 ± 0.86	85.43 ± 0.55
)ur:	Min-min		$71.75{\scriptstyle\pm0.90}$	86.40 ± 0.56
	Sum-min	- SI	$73.63{\scriptstyle \pm 0.88}$	87.59±0.57

[†]taken from [31]; Mappers dimension: SF12 $\in \mathbb{R}^{512}$

• CUB evaluation of SetFeat4 results in +1.83% im-

provement in 1-shot

Table 3. Fine-grained evaluation using CUB in 5-way. \pm is the 95% confidence intervals on 600 episodes([‡]taken from [54]).

Method	Backbone	1-shot	5-shot
MatchingNet [59]		61.16±0.89	72.86 ± 0.70
ProtoNet [50]	54.	$64.42{\scriptstyle\pm0.48}$	$81.82{\pm}0.35$
MAML [17]	/4-0	$55.92{\scriptstyle\pm0.95}$	$72.09{\scriptstyle\pm0.76}$
RelationNet [53]	onv	$62.45{\scriptstyle\pm0.98}$	$76.11{\scriptstyle \pm 0.69}$
FEAT [68]	Ŭ	$68.87{\scriptstyle\pm0.22}$	$82.90{\scriptstyle\pm0.15}$
MELR [16]	I	$70.26{\scriptstyle\pm0.50}$	$85.01{\pm}0.32$
Match-sum	7	$67.35{\scriptstyle\pm0.93}$	$83.82{\pm}0.61$
ظ Min-min	4-6	$70.15{\scriptstyle\pm0.93}$	$84.94{\scriptstyle\pm0.64}$
\bigcup_{I} Sum-min	SF	$\textbf{72.09}{\scriptstyle \pm 0.92}$	$87.05{\scriptstyle\pm0.58}$

ABLATIONS

Table 4. Ablation of different mapper-level combinations using miniImageNet. The results are validation accuracy with min-sum.

Table 6. Ablation of top-m mapper in the min-sum metric using SetFeat4 and SetFeat12^{*} on CUB. The results are validation set.

• Mapper configurations. different ways of embedding ten mappers throughout the backbone

	SetFeat4-64	SetFeat4-512		
Mappers	1-shot 5-shot	1-shot 5-shot		
ProtoNet*	53.51 71.57			
0-0-0-1	53.55 71.51			
1-2-3-4 (concat)	53.56 71.82			
1-1-1-1	51.11 69.41	53.57 71.60		
0-0-0-10	52.90 69.49	55.36 71.59		
2-2-3-3	54.73 71.98	56.29 74.74		
1-2-3-4	54.71 71.35	58.74 75.30		
* with Conv4-512				

• Top-m analysis. the results improve as we move towards sum-min, which uses all of the mappers

	SetFeat4		SetFeat12*	
Method	1-shot	5-shot	1-shot	5-shot
top-1 (min-min)	70.15	84.94	78.51	89.73
top-2	70.84	85.30	77.92	89.87
top-4	70.34	85.95	78.37	89.78
top-8	71.47	86.88	79.56	90.03
top-10 (sum-min)	72.09	87.05	79.60	90.48

• t-SNE visualization. the distributions of mapper embeddings are generally disjoint

• Visualizing mappers saliency. our approach devotes attention to many more parts of the images

Acknowledgements. This project was supported by NSERC-Canada and CIFAR Chair.