
Matching Feature Sets for Few-Shot Image Classification
Arman Afrasiyabi⋆•, Hugo Larochelle⋄†•, Jean-François Lalonde⋆, Christian Gagné⋆†•

⋆Université Laval, ⋄Google Brain, †Canada CIFAR AI Chair, •Mila
https://lvsn.github.io/SetFeat/

SETFEAT
it is common practice to extract a single feature
vector per input image
we propose set-feature extractor (SetFeat) to rep-
resent images as sets of feature vectors
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b) ours

single feature vector

• we take inspiration from Feature Pyramid Net-
works to learn a richer feature space

• SetFeat embeds shallow self-attention mappers
in existing architecture
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• for attention map, we first compute

βm = Softmax
(
q(zbm |θqm)k(zbm |θkm)⊤/

√
dk

)
,

where βm ∈ RP×P

• then, we compute the attention over βm

am = βm v(zbm |θvm) ,

where am ∈ RP×Da

consists of P patches

SET-TO-SET METRICS
SetFeat first extracts sets of features

then, we need a set-to-set metric to compare the
feature set of the query with the feature sets cor-
responding to each instance of the support set of
each class

…

…

…

SetFeat

mapper
1

mapper
2

mapper
3

mapper
M

shared

support

…mapper
1

mapper
2

mapper
3

mapper
M

SetFeat

query

…

…
q
u
er

y
su

p
p
o
rt

q
u
er

y

CNN

su
p
p
o
rt

q
u
er

y
CNN

su
p
p
o
rt

CNN

embedding 

adaptation

shared

CNN

shared

embedding

function

shared

shared

CNN

CNN

embedding

function

F
E

A
T

M
at

ch
in

g
N

et
P

ro
to

N
et

a) Three baseline methods b) Set matching (ours)

Set-to-set Metric

Match-sum aggregates the distance between
matching mappers

dms(xq,Sn) =

M∑
i=1

d
(
hi(xq), h̄i(Sn)

)
.

Min-min uses the minimum distance across all
possible pairs of elements

dmm(xq,Sn) =
M
min
i=1

M
min
j=1

d
(
hi(xq), h̄j(Sn)

)
.

Sum-min aggregates with a sum the minimum
distances between the mappers

dsm(xq,Sn) =
M∑
i=1

M
min
j=1

d
(
hi(xq), h̄j(Sn)

)
.

illustration of our set-to-set metric
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(a) match-sum (b) min-min (c) sum-min

EVALUATIONS

MiniImageNet evaluations of SetFeat4 results in
+2.03% improvement in 1-shot

5. Evaluation

This section first covers the details of our experiments
with SetFeat, which are based on conventional backbones
employed in the few-shot image classification literature. This
is followed by description of the datasets and implementation
details are described next. Finally, we present the evalua-
tions of SetFeat with our set-matching metrics using four
backbones with three datasets.

5.1. Backbones

We adopt the following three popular backbones, each
composed of four blocks: (a) Conv4-64 [59], which consists
of 4 convolution layers with 64/64/64/64 filters for a total
of 0.113M parameters, (b) Conv4-512 [59]: 96/128/256/512
for 1.591M parameters, and (c) ResNet12 [26, 40]:
64/160/320/640 for 12.424M parameters. In all experiments
below, we embed a total of 10 self-attention mappers through-
out each backbone by following this per-block pattern: 1
mapper after block 1, then 2, 3 and 4 mappers for the three
subsequent blocks. We experiment with other choices of
mapper configurations in sec. 6.3.

Since our attention-based feature mappers require ad-
ditional parameters, we correspondingly reduce the num-
ber of kernels in the backbone feature extractors to ensure
that the performance gains are not simply due to the over-
parameterization. Specifically, our SetFeat4-512, the coun-
terpart of Conv4-512, uses a reduced set of 96/128/160/200
convolution kernels for a total of 1.583M parameters (com-
pared to 1.591M for Conv4-512). SetFeat12, counterpart of
ResNet12, consists of 128/150/180/512 kernels for 12.349M
parameters (comp. 12.424M for ResNet12). For Conv4-64,
reducing the amount of parameters collapses the training (as
noted in [16, 65, 68]) since it contains very few parameters
already. Our SetFeat4-64 therefore has more parameters
(0.238M vs 0.113M for Conv4-64), but in sec. 6.2 we artifi-
cially augment the number of parameters for Conv4-64 and
show our approach still outperforms it.

Convolutional attention [64] is used in SetFeat4-512 and
SetFeat12. Particularly, we used single depth convolution
and batch normalization to parameterize key, query and value
in each mapper. The output dimension of the feature map-
pers is set to the number of channels in the last layer of the
feature extractor — having all mappers producing feature
vectors of the same dimension is a necessary condition for
our proposed metrics. For SetFeat4, FC-layers are used to
compute the attention in order to limit the number of addi-
tional parameters as much as possible. The supplementary
material includes the details of our implementation.

5.2. Datasets and implementation details

We conduct experiments on miniImageNet [59]
(100/50/50 train/validation/test classes), tieredImageNet [44]

Table 1. Evaluation on miniImageNet in 5-way. Bold/blue is
best/second, and± is the 95% confidence intervals in 600 episodes.

Method Backbone 1-shot 5-shot

ProtoNet [50]

—
—

—
—

C
on

v4
-6

4
—

—
—

— 49.42±0.78 68.20±0.66

MAML [18] 48.07±1.75 63.15±0.91

RelationNet [53] 50.44±0.82 65.32±0.70

Baseline++ [8] 48.24±0.75 66.43±0.63

IMP [3] 49.60±0.80 68.10±0.80

MemoryNet [7] 53.37±0.48 66.97±0.35

Neg-Margin [35] 52.84±0.76 70.41±0.66

MixtFSL [2] 52.82±0.63 70.67±0.57

FEAT [68] 55.15±0.20 71.61±0.16

MELR [16] 55.35±0.43 72.27±0.35

BOIL [39]

SF
4-

64

49.61±0.16 66.45±0.37

–
O

ur
s

– Match-sum 55.74±0.65 72.18±0.70

Min-min 56.22±0.89 72.70±0.65

Sum-min 57.18±0.89 73.67±0.71

ProtoNet† [50]

—
C

on
v4

-5
12

— 53.52±0.43 73.34±0.36

MAML [17] 49.33±0.60 65.17±0.49

Relation Net [53] 50.86±0.57 67.32±0.44

PN+rot [22] 56.02±0.46 74.00±0.35

CC+rot [21] 56.27±0.43 74.30±0.33

MELR [16]

SF
4-

51
2

57.54±0.44 74.37±0.34

–
O

ur
s

– Match-sum 56.50±0.85 72.69±0.68

Min-min 58.57±0.87 73.46±0.68

Sum-min 59.10±0.87 74.97±0.66

AdaResNet [38]

—
—

—
—

R
es

N
et

12
—

—
—

—

56.88±0.62 71.94±0.57

TADAM [40] 58.50±0.30 76.70±0.30

MetaOptNet [31] 62.64±0.61 78.63±0.46

Neg-Margin [35] 63.85±0.76 81.57±0.56

MixtFSL [2] 63.98±0.79 82.04±0.49

Meta-Baseline [9] 63.17±0.23 79.26±0.17

Distill [55] 64.82±0.60 82.14±0.43

DeepEMD [74] 65.91±0.82 82.41±0.56

DMF [66] 67.76±0.46 82.71±0.31

MELR [16] 67.40±0.43 83.40±0.28

ProtoNet§ [50] 62.39 80.53
FEAT§ [68]

-S
F-

12
-

66.78 82.05

–
O

ur
s

– Match-sum 67.41±0.64 81.79±0.55

Min-min 67.88±0.55 82.07±0.61

Sum-min 68.32±0.62 82.71±0.46

§confidence interval not provided † taken from [16]
Mappers dimension: SF4-64∈ R64, SF4-512∈ R200, SF12∈ R512

(351/97/160) for object recognition, and CUB [60]
(100/50/50) for fine-grained classification. To pretrain Set-
Feat4, we used Adam [40] with a learning rate (lr) of 0.001
and weight decay of 5× 10−4. Batch size is fixed to 64. For

TieredImageNet evaluation of SetFeat12 results
in +1.42% improvement in 1-shot

Table 2. TieredImageNet evaluation. Bold/red is best/second best,
and± indicates the 95% conf. intervals over 600 episodes of 5-way.

Method Backbone 1-shot 5-shot

OptNet [31]

—
—

—
—

—
-R

es
N

et
12

—
—

—
—

— 65.99±0.72 81.56±0.53

MTL [52] 65.62±1.80 80.61±0.90

DNS [48] 66.22±0.75 82.79±0.48

Simple [55] 69.74±0.72 84.41±0.55

TapNet [70] 63.08±0.15 80.26±0.12

ProtoNet† [50] 68.23± 0.23 84.03±0.16

FEAT [68] 70.80±0.23 84.79±0.16

MixtFSL [2] 70.97±1.03 86.16±0.67

Distill [55] 71.52±0.69 86.03±0.49

DeepEMD [74] 71.16±0.87 86.03±0.58

DMF [66] 71.89±0.52 85.96±0.35

MELR [16] 72.14±0.51 87.01±0.35

Distill [45] 72.21±0.90 87.08±0.58

–
O

ur
s

– Match-sum

-S
F1

2
- 71.22±0.86 85.43±0.55

Min-min 71.75±0.90 86.40±0.56

Sum-min 73.63±0.88 87.59±0.57

†taken from [31]; Mappers dimension: SF12 ∈ R512

SetFeat12, we used Nesterov momentum with an initial lr of
0.1, momentum of 0.9 and weight decay of 5 × 10−4. We
follow [66, 68, 74] for normalization and data augmentation.
In the meta-training stage, SGD is used for all architectures.
Validation sets are used to tune the schedule of the optimizer.

5.3. Quantitative and comparative evaluations

miniImageNet Table 1 presents evaluations of SetFeat
with our set-to-set metrics on the miniImageNet dataset.
First, we observe that our sum-min metric outperforms both
the other proposed metrics and the state-of-the-art except in
the 5-shot with SetFeat12. In particular, SetFeat4-64 (sum-
min) results in an accuracy gain of 1.83% and 1.4% over
MELR [16] in 1- and 5-shot, respectively.

tieredImageNet Table 2 presents the tieredImageNet eval-
uation of SetFeat12 with our proposed metrics. Our sum-min
metric results in 1.42% and 0.51 % improvement over the
baseline Distill [45] in 1- and 5-shot. Please note that base-
lines such as Distill [45], MELR [16], and FEAT [68] contain
more parameters than the original ResNet12 and SetFeat12.

CUB Table 3 illustrates the fine-grained classification
evaluation of our approach, compared to Conv4-64 and
ResNet18. We observe that SetFeat4-64 (min-min) again sur-
passes all baselines by providing gains of 1.83% and 2.04%
over MELR [16] in 1- and 5-shot respectively. When com-
paring with ResNet18, we further reduce the number of con-
volution kernels to 128/150/196/480 (dubbed SetFeat12∗)

Table 3. Fine-grained evaluation using CUB in 5-way. ± is the
95% confidence intervals on 600 episodes( ‡taken from [54]).

.

Method Backbone 1-shot 5-shot

MatchingNet [59]

—
C

on
v4

-6
4

— 61.16±0.89 72.86±0.70

ProtoNet [50] 64.42±0.48 81.82±0.35

MAML [17] 55.92±0.95 72.09±0.76

RelationNet [53] 62.45±0.98 76.11±0.69

FEAT [68] 68.87±0.22 82.90±0.15

MELR [16]

SF
4-

64

70.26±0.50 85.01±0.32

–
O

ur
s

– Match-sum 67.35±0.93 83.82±0.61

Min-min 70.15±0.93 84.94±0.64

Sum-min 72.09±0.92 87.05±0.58

Robust-20 [15]

—
–

R
es

N
et

18
—

— 58.67±0.7 75.62±0.5

RelationNet‡ [53] 67.59±1.0 82.75±0.6

MAML‡ [17] 68.42±1.0 83.47±0.6

ProtoNet‡ [50] 71.88±0.9 86.64±0.5

Baseline++ [8] 67.02±0.9 83.58±0.5

MixtFSL [2] 73.94±1.1 86.01±0.5

Neg-Margin [35]

-S
F1

2∗
-

72.66±0.9 89.40±0.4

–
O

ur
s

– Match-sum 77.95± 0.83 88.93± 0.49

Min-min 78.51±0.82 89.73±0.47

Sum-min 79.60±0.80 90.48± 0.44

Mappers dimension: SF4-64 ∈ R64, and SF12∗ ∈ R480

to better match the number of parameters (11.466M for
SetFeat12∗ vs 11.511M for ResNet18). Our approach again
defines a new state-of-the-art performance in this scenario.

6. Ablation
In this section, we further analyze SetFeat to explore

alternative design decisions and gain a better understanding
as to why our set-based model achieves better accuracy.

6.1. Mapper configurations

We now experiment with different ways of embedding
ten mappers throughout the backbone levels. We compare:
1) putting all mappers on the last layer (0-0-0-10); 2) a single
mapper per block (1-1-1-1); 3) distributing mappers more
equally (2-2-3-3); and 4) employing a progressive growth
strategy (1-2-3-4) (this last one being used in the main evalua-
tion in sec. 5). Table 4 compares these four strategies on both
SetFeat4-64 and SetFeat4-512 on the validation set of mini-
ImageNet. We observe that placing mappers throughout the
network yields better results than putting them all at the end.
The two other options perform similarly. We also observe
that (2-2-3-3) only beats (1-2-3-4) using shallower network
SetFeat4-64 in 5-shot. Otherwise, progressive growth either
reaches or surpasses the other combinations. Note, that going
from 0-0-0-10 to 1-2-3-4 or 2-2-3-3 improves performance

CUB evaluation of SetFeat4 results in +1.83% im-
provement in 1-shot

Table 2. TieredImageNet evaluation. Bold/red is best/second best,
and± indicates the 95% conf. intervals over 600 episodes of 5-way.

Method Backbone 1-shot 5-shot

OptNet [31]

—
—

—
—

—
-R

es
N

et
12

—
—

—
—

— 65.99±0.72 81.56±0.53

MTL [52] 65.62±1.80 80.61±0.90

DNS [48] 66.22±0.75 82.79±0.48

Simple [55] 69.74±0.72 84.41±0.55

TapNet [70] 63.08±0.15 80.26±0.12

ProtoNet† [50] 68.23± 0.23 84.03±0.16

FEAT [68] 70.80±0.23 84.79±0.16

MixtFSL [2] 70.97±1.03 86.16±0.67

Distill [55] 71.52±0.69 86.03±0.49

DeepEMD [74] 71.16±0.87 86.03±0.58

DMF [66] 71.89±0.52 85.96±0.35

MELR [16] 72.14±0.51 87.01±0.35

Distill [45] 72.21±0.90 87.08±0.58

–
O

ur
s

– Match-sum

-S
F1

2
- 71.22±0.86 85.43±0.55

Min-min 71.75±0.90 86.40±0.56

Sum-min 73.63±0.88 87.59±0.57

†taken from [31]; Mappers dimension: SF12 ∈ R512

SetFeat12, we used Nesterov momentum with an initial lr of
0.1, momentum of 0.9 and weight decay of 5 × 10−4. We
follow [66, 68, 74] for normalization and data augmentation.
In the meta-training stage, SGD is used for all architectures.
Validation sets are used to tune the schedule of the optimizer.

5.3. Quantitative and comparative evaluations

miniImageNet Table 1 presents evaluations of SetFeat
with our set-to-set metrics on the miniImageNet dataset.
First, we observe that our sum-min metric outperforms both
the other proposed metrics and the state-of-the-art except in
the 5-shot with SetFeat12. In particular, SetFeat4-64 (sum-
min) results in an accuracy gain of 1.83% and 1.4% over
MELR [16] in 1- and 5-shot, respectively.

tieredImageNet Table 2 presents the tieredImageNet eval-
uation of SetFeat12 with our proposed metrics. Our sum-min
metric results in 1.42% and 0.51 % improvement over the
baseline Distill [45] in 1- and 5-shot. Please note that base-
lines such as Distill [45], MELR [16], and FEAT [68] contain
more parameters than the original ResNet12 and SetFeat12.

CUB Table 3 illustrates the fine-grained classification
evaluation of our approach, compared to Conv4-64 and
ResNet18. We observe that SetFeat4-64 (min-min) again sur-
passes all baselines by providing gains of 1.83% and 2.04%
over MELR [16] in 1- and 5-shot respectively. When com-
paring with ResNet18, we further reduce the number of con-
volution kernels to 128/150/196/480 (dubbed SetFeat12∗)

Table 3. Fine-grained evaluation using CUB in 5-way. ± is the
95% confidence intervals on 600 episodes( ‡taken from [54]).

.

Method Backbone 1-shot 5-shot

MatchingNet [59]
—

C
on

v4
-6

4
— 61.16±0.89 72.86±0.70

ProtoNet [50] 64.42±0.48 81.82±0.35

MAML [17] 55.92±0.95 72.09±0.76

RelationNet [53] 62.45±0.98 76.11±0.69

FEAT [68] 68.87±0.22 82.90±0.15

MELR [16]

SF
4-

64

70.26±0.50 85.01±0.32

–
O

ur
s

– Match-sum 67.35±0.93 83.82±0.61

Min-min 70.15±0.93 84.94±0.64

Sum-min 72.09±0.92 87.05±0.58

Robust-20 [15]

—
–

R
es

N
et

18
—

— 58.67±0.7 75.62±0.5

RelationNet‡ [53] 67.59±1.0 82.75±0.6

MAML‡ [17] 68.42±1.0 83.47±0.6

ProtoNet‡ [50] 71.88±0.9 86.64±0.5

Baseline++ [8] 67.02±0.9 83.58±0.5

MixtFSL [2] 73.94±1.1 86.01±0.5

Neg-Margin [35]

-S
F1

2∗
-

72.66±0.9 89.40±0.4

–
O

ur
s

– Match-sum 77.95± 0.83 88.93± 0.49

Min-min 78.51±0.82 89.73±0.47

Sum-min 79.60±0.80 90.48± 0.44

Mappers dimension: SF4-64 ∈ R64, and SF12∗ ∈ R480

to better match the number of parameters (11.466M for
SetFeat12∗ vs 11.511M for ResNet18). Our approach again
defines a new state-of-the-art performance in this scenario.

6. Ablation
In this section, we further analyze SetFeat to explore

alternative design decisions and gain a better understanding
as to why our set-based model achieves better accuracy.

6.1. Mapper configurations

We now experiment with different ways of embedding
ten mappers throughout the backbone levels. We compare:
1) putting all mappers on the last layer (0-0-0-10); 2) a single
mapper per block (1-1-1-1); 3) distributing mappers more
equally (2-2-3-3); and 4) employing a progressive growth
strategy (1-2-3-4) (this last one being used in the main evalua-
tion in sec. 5). Table 4 compares these four strategies on both
SetFeat4-64 and SetFeat4-512 on the validation set of mini-
ImageNet. We observe that placing mappers throughout the
network yields better results than putting them all at the end.
The two other options perform similarly. We also observe
that (2-2-3-3) only beats (1-2-3-4) using shallower network
SetFeat4-64 in 5-shot. Otherwise, progressive growth either
reaches or surpasses the other combinations. Note, that going
from 0-0-0-10 to 1-2-3-4 or 2-2-3-3 improves performance

ABLATIONS

Mapper configurations. different ways of embed-
ding ten mappers throughout the backbone

Table 4. Ablation of different mapper-level combinations using
miniImageNet. The results are validation accuracy with min-sum.

SetFeat4-64 SetFeat4-512
Mappers 1-shot 5-shot 1-shot 5-shot

ProtoNet∗ 53.51 71.57 – –
0-0-0-1 53.55 71.51 – –
1-2-3-4 (concat) 53.56 71.82 – –
1-1-1-1 51.11 69.41 53.57 71.60
0-0-0-10 52.90 69.49 55.36 71.59
2-2-3-3 54.73 71.98 56.29 74.74
1-2-3-4 54.71 71.35 58.74 75.30

∗ with Conv4-512

Table 5. Ablation of our SetFeat with miniImageNet and CUB on
600 episodes with augmented Conv4-64 and SetFeat4-64 in 5-way.

miniImageNet CUB
Method 1-shot 5-shot 1-shot 5-shot

ProtoNet [50] 49.42 68.20 68.23 84.03
ProtoNet∗ [50] 49.98 69.53 69.11 85.27
Sum-min (ours) 57.18 73.67 73.50 87.61
∗ our implementation with augmented Conv4-64

while using the same number of mappers, which confirms
that multi-scale indeed helps. Additionally, removing our set-
based representation by concatenating all mappers outputs
and treating the result as a single (multi-scale) feature vec-
tor (“concat” in tab. 4) completely cancels any performance
gain. Therefore, we conclude that it is our sets of multi-scale
features that explains the performance improvement.

6.2. Over-parameterization of SetFeat4-64

Sec. 5.1 mentioned that the number of kernels in back-
bone feature extractors was reduced in such a way that
adding our proposed attention-based mappers did not signifi-
cantly change the total number of parameters in the network—
but unfortunately doing so for Conv4-64 resulted in poor
generalization as each of its four blocks is only composed
of a single layer with 64 kernels. Here, we instead augment
Conv4-64 and add parameters with three FC layers (of 512,
160, 64 dimensions) after the convolutional blocks. This
reaches 0.239M parameters, which matches the 0.238M pa-
rameters of SetFeat4-64. Results are presented in table 5.
Although the augmented Conv4-64 improves over the base-
line Conv4-64, the improvements are significantly below
those obtained by SetFeat4-64, showing that the additional
parameters alone do not explain the performance gap.

6.3. Probing the activation of mappers

Let us now investigate whether all mappers are actually
useful by analyzing the behavior under the sum-min metric

go
ose

i.h
ou

nd
w.wolf

mee
rka

t

r.b
ee

tle

can
no

n
car

ton

cat
am

ara
n

c.lo
ck

g.t
ruc

k
h.b

ar iPo
d

minis
kir

t

miss
ile

po
nch

o
c.r

ee
f

Validation Categories (miniImageNet)

m1-block1

m2-block2

m3-block2

m4-block3

m5-block3

m6-block3

m7-block4

m8-block4

m9-block4

m10-block4

To
p-

1 
pe

rc
en

ta
ge

 o
f F

ea
tu

re
 M

ap
pe

rs

10 10 9.7 11 12 11 11 9.8 10 11 9.9 12 11 11 10 11

10 9.9 9.4 10 10 10 10 9.8 10 10 9.6 10 10 10 10 9.7

10 9.9 9.4 10 10 10 10 9.9 10 10 9.7 10 10 10 10 9.7

9.9 9.9 9.6 10 9.9 9.8 9.9 9.9 9.8 9.8 9.7 9.6 10 9.8 10 9.8

9.9 9.8 9.6 10 9.9 9.9 9.8 9.9 9.8 10 9.7 9.6 10 9.8 10 9.8

9.9 9.9 9.7 10 9.8 10 9.8 9.9 9.9 10 9.7 9.6 10 9.9 10 9.7

10 10 11 9.7 9.6 9.8 9.7 10 9.9 9.9 10 9.7 9.5 9.8 9.8 10

9.9 10 11 9.7 9.4 9.7 9.8 10 9.9 9.8 10 9.7 9.6 9.8 9.8 10

9.9 10 11 9.7 9.5 9.7 9.8 10 9.9 9.7 10 9.7 9.6 9.8 9.7 10

9.8 10 11 9.7 9.5 9.7 9.7 10 9.9 9.8 10 9.7 9.6 9.7 9.7 10

6

8

10

12

14

16

Figure 3. The percentage time each of the mappers (y-axis) is
selected for each of the 16 validation categories (x-axis) of the
miniImageNet dataset. The result is obtained by SetFeat12 and
averaged over 600 episodes of 5-way 1-shot. While the earlier
mappers are more often active, all mappers are consistently useful.
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Figure 4. Visualizing mappers with t-SNE [57] on 640 randomly-
sampled from validation set for (a) miniImageNet with SetFeat12,
(b) CUB with SetFeat12∗ (sec. 5.3) and (c) tieredImageNet with
SetFeat12. Points are color-coded according to the mapper.

(sec. 4.2). For this, fig. fig. 3 illustrates the percentage of
time where a specific mapper (y-axis) provides the minimum
prototype-query distance for each validation class (x-axis)
in the miniImageNet dataset. This illustrates that low-level
mappers are often active like the high-level ones, but all map-
pers are consistently being used across all validation classes,
thereby validating that our proposed set-based representation
is effective and working as expected.

In addition, fig. 7 shows t-SNE [57] visualizations of
640 embedded examples from miniImageNet, CUB, and
tieredImageNet datasets using our set-feature extractor. Note
how the distributions of mapper embeddings are generally
disjoint and do not collapse to overlapping points, which
shows intuitively that mappers extract different features.

6.4. Top-m analysis

The min-min and sum-min metrics (eqs. (4) and (5) re-
spectively) are two ends of the spectrum: min-min takes
the minimum distance across all mappers, while sum-min
computes the sum over all the mappers. Here, we sort the
mappers according to distance and sum the top-m as an

Top-m analysis. the results improve as we move
towards sum-min, which uses all of the mappers

Table 6. Ablation of top-m mapper in the min-sum metric using
SetFeat4 and SetFeat12∗ on CUB. The results are validation set.

SetFeat4 SetFeat12∗
Method 1-shot 5-shot 1-shot 5-shot

top-1 (min-min) 70.15 84.94 78.51 89.73
top-2 70.84 85.30 77.92 89.87
top-4 70.34 85.95 78.37 89.78
top-8 71.47 86.88 79.56 90.03
top-10 (sum-min) 72.09 87.05 79.60 90.48

ablation shown in table 6. In general, we observe that the
classification results progressively improve as we move to-
wards sum-min, which uses all of the mappers.

6.5. Visualizing mappers saliency

We now visualize in fig. fig. 5 the impact of learning a
set of features by visualizing the saliency map of each map-
per, and by comparing them with the saliency maps of the
single-feature approach of Chen et al. [8]. We compute the
smoothed saliency maps [49] by single back-propagation
through a classification layer. It can be seen that our ap-
proach devotes attention to many more parts of the images
than when a single feature vector is learned. For example,
note how a single dog is highlighted (fourth row of fig. fig. 5),
whereas our mappers jointly fire on all three. Please consult
the supplementary materials for more examples.

7. Discussion

This paper proposes to extract and match sets of feature
vectors for few-shot image classification. This contrasts with
the use of a monolithic single-vector representation, which is
a popular strategy in that context. To produce these sets, we
embed shallow attention-based mappers at different stages
of conventional convolutional backbones. These mappers
aim at extracting distinct sets of features with random ini-
tialization, capturing different properties of the images seen.
Here, the non-linearity in the sum-min and min-min creates
diversity: the inner minimum distance causes a non-linearity
that forces the selection of a given mapper. Match-sum, our
worst metric, only benefits from random initialization. We
then rely on set-to-set matching metrics for inferring the
class of a given query from the support set examples, fol-
lowing the usual approach for inference with prototypical
networks. Experiments with four different adaptations of
two main backbones demonstrate the effectiveness of our ap-
proach by achieving state-of-the-art results in miniImageNet,
tieredImageNet, and CUB datasets. For fair comparison, the
parameters of all the adapted backbones are reduced accord-
ing to the number of parameters added by the mappers.

(a) input (b) baseline (c) ours

Figure 5. Comparision of gradient saliency maps. From left, we
look at the (a) input original image, (b) baseline [8], and (c) subset
of five feature vectors extracted by SetFeat12. The figure presents
three examples of the training data in the first rows and four exam-
ples from the valid. set of miniImageNet in the last four rows.

Limitations Even though a comparison with different
mapper configurations has been provided in sec. 6.1, we
have evaluated our method using a fixed set of M = 10
mappers. Using more mappers (M > 10) has been con-
sidered, but was eventually dismissed since increasing the
number of mappers would require reducing the number of
filters, which in turn could cause underfitting due to under-
parameterization. As future work, we see great potential on
analyzing the effect of increasing the number of mappers,
possibly with larger backbones. Another topic requiring
further investigations would be to vary the weighting of
each mapper through more flexible set-to-set matching met-
rics. Although the min-sum and min-min metric non-linearly
match the feature sets (through the min operation), investi-
gating the weighted sum-min would be an interesting future
work. Here, adapting Deep Set [72] before computing the
min-sum metric would be a potential direction to investigate
the weighted set-to-set mapping. Finally, we are particularly
enthusiastic regarding the adaptation of our approach to self-
supervised, since the set of features provide more choices
for the comparison of different variations of single images.
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t-SNE visualization. the distributions of mapper
embeddings are generally disjoint

Table 4. Ablation of different mapper-level combinations using
miniImageNet. The results are validation accuracy with min-sum.

SetFeat4-64 SetFeat4-512
Mappers 1-shot 5-shot 1-shot 5-shot

ProtoNet∗ 53.51 71.57 – –
0-0-0-1 53.55 71.51 – –
1-2-3-4 (concat) 53.56 71.82 – –
1-1-1-1 51.11 69.41 53.57 71.60
0-0-0-10 52.90 69.49 55.36 71.59
2-2-3-3 54.73 71.98 56.29 74.74
1-2-3-4 54.71 71.35 58.74 75.30

∗ with Conv4-512

Table 5. Ablation of our SetFeat with miniImageNet and CUB on
600 episodes with augmented Conv4-64 and SetFeat4-64 in 5-way.

miniImageNet CUB
Method 1-shot 5-shot 1-shot 5-shot

ProtoNet [50] 49.42 68.20 68.23 84.03
ProtoNet∗ [50] 49.98 69.53 69.11 85.27
Sum-min (ours) 57.18 73.67 73.50 87.61
∗ our implementation with augmented Conv4-64

while using the same number of mappers, which confirms
that multi-scale indeed helps. Additionally, removing our set-
based representation by concatenating all mappers outputs
and treating the result as a single (multi-scale) feature vec-
tor (“concat” in tab. 4) completely cancels any performance
gain. Therefore, we conclude that it is our sets of multi-scale
features that explains the performance improvement.

6.2. Over-parameterization of SetFeat4-64

Sec. 5.1 mentioned that the number of kernels in back-
bone feature extractors was reduced in such a way that
adding our proposed attention-based mappers did not signifi-
cantly change the total number of parameters in the network—
but unfortunately doing so for Conv4-64 resulted in poor
generalization as each of its four blocks is only composed
of a single layer with 64 kernels. Here, we instead augment
Conv4-64 and add parameters with three FC layers (of 512,
160, 64 dimensions) after the convolutional blocks. This
reaches 0.239M parameters, which matches the 0.238M pa-
rameters of SetFeat4-64. Results are presented in table 5.
Although the augmented Conv4-64 improves over the base-
line Conv4-64, the improvements are significantly below
those obtained by SetFeat4-64, showing that the additional
parameters alone do not explain the performance gap.

6.3. Probing the activation of mappers

Let us now investigate whether all mappers are actually
useful by analyzing the behavior under the sum-min metric
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Figure 3. The percentage time each of the mappers (y-axis) is
selected for each of the 16 validation categories (x-axis) of the
miniImageNet dataset. The result is obtained by SetFeat12 and
averaged over 600 episodes of 5-way 1-shot. While the earlier
mappers are more often active, all mappers are consistently useful.
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Figure 4. Visualizing mappers with t-SNE [57] on 640 randomly-
sampled from validation set for (a) miniImageNet with SetFeat12,
(b) CUB with SetFeat12∗ (sec. 5.3) and (c) tieredImageNet with
SetFeat12. Points are color-coded according to the mapper.

(sec. 4.2). For this, fig. fig. 3 illustrates the percentage of
time where a specific mapper (y-axis) provides the minimum
prototype-query distance for each validation class (x-axis)
in the miniImageNet dataset. This illustrates that low-level
mappers are often active like the high-level ones, but all map-
pers are consistently being used across all validation classes,
thereby validating that our proposed set-based representation
is effective and working as expected.

In addition, fig. 7 shows t-SNE [57] visualizations of
640 embedded examples from miniImageNet, CUB, and
tieredImageNet datasets using our set-feature extractor. Note
how the distributions of mapper embeddings are generally
disjoint and do not collapse to overlapping points, which
shows intuitively that mappers extract different features.

6.4. Top-m analysis

The min-min and sum-min metrics (eqs. (4) and (5) re-
spectively) are two ends of the spectrum: min-min takes
the minimum distance across all mappers, while sum-min
computes the sum over all the mappers. Here, we sort the
mappers according to distance and sum the top-m as an

Visualizing mappers saliency. our approach de-
votes attention to many more parts of the images

Table 6. Ablation of top-m mapper in the min-sum metric using
SetFeat4 and SetFeat12∗ on CUB. The results are validation set.

SetFeat4 SetFeat12∗
Method 1-shot 5-shot 1-shot 5-shot

top-1 (min-min) 70.15 84.94 78.51 89.73
top-2 70.84 85.30 77.92 89.87
top-4 70.34 85.95 78.37 89.78
top-8 71.47 86.88 79.56 90.03
top-10 (sum-min) 72.09 87.05 79.60 90.48

ablation shown in table 6. In general, we observe that the
classification results progressively improve as we move to-
wards sum-min, which uses all of the mappers.

6.5. Visualizing mappers saliency

We now visualize in fig. fig. 5 the impact of learning a
set of features by visualizing the saliency map of each map-
per, and by comparing them with the saliency maps of the
single-feature approach of Chen et al. [8]. We compute the
smoothed saliency maps [49] by single back-propagation
through a classification layer. It can be seen that our ap-
proach devotes attention to many more parts of the images
than when a single feature vector is learned. For example,
note how a single dog is highlighted (fourth row of fig. fig. 5),
whereas our mappers jointly fire on all three. Please consult
the supplementary materials for more examples.

7. Discussion

This paper proposes to extract and match sets of feature
vectors for few-shot image classification. This contrasts with
the use of a monolithic single-vector representation, which is
a popular strategy in that context. To produce these sets, we
embed shallow attention-based mappers at different stages
of conventional convolutional backbones. These mappers
aim at extracting distinct sets of features with random ini-
tialization, capturing different properties of the images seen.
Here, the non-linearity in the sum-min and min-min creates
diversity: the inner minimum distance causes a non-linearity
that forces the selection of a given mapper. Match-sum, our
worst metric, only benefits from random initialization. We
then rely on set-to-set matching metrics for inferring the
class of a given query from the support set examples, fol-
lowing the usual approach for inference with prototypical
networks. Experiments with four different adaptations of
two main backbones demonstrate the effectiveness of our ap-
proach by achieving state-of-the-art results in miniImageNet,
tieredImageNet, and CUB datasets. For fair comparison, the
parameters of all the adapted backbones are reduced accord-
ing to the number of parameters added by the mappers.

(a) input (b) baseline (c) ours

Figure 5. Comparision of gradient saliency maps. From left, we
look at the (a) input original image, (b) baseline [8], and (c) subset
of five feature vectors extracted by SetFeat12. The figure presents
three examples of the training data in the first rows and four exam-
ples from the valid. set of miniImageNet in the last four rows.

Limitations Even though a comparison with different
mapper configurations has been provided in sec. 6.1, we
have evaluated our method using a fixed set of M = 10
mappers. Using more mappers (M > 10) has been con-
sidered, but was eventually dismissed since increasing the
number of mappers would require reducing the number of
filters, which in turn could cause underfitting due to under-
parameterization. As future work, we see great potential on
analyzing the effect of increasing the number of mappers,
possibly with larger backbones. Another topic requiring
further investigations would be to vary the weighting of
each mapper through more flexible set-to-set matching met-
rics. Although the min-sum and min-min metric non-linearly
match the feature sets (through the min operation), investi-
gating the weighted sum-min would be an interesting future
work. Here, adapting Deep Set [72] before computing the
min-sum metric would be a potential direction to investigate
the weighted set-to-set mapping. Finally, we are particularly
enthusiastic regarding the adaptation of our approach to self-
supervised, since the set of features provide more choices
for the comparison of different variations of single images.
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