

TrackPGD: Efficient Adversarial Attack using Object Binary Masks against Robust Transformer Trackers

Fatemeh Nourilenjan Nokabadi^{1,2,3}, Yann Batiste Pequignot^{1,2}, Jean-François Lalonde^{1,2}, Christian Gagné^{1,2,3,4} ¹IID, ²Université Laval, ³Mila, ⁴Canada CIFAR AI Chair

Contributions

- TrackPGD builds the adversarial noise from the binary mask to attack transformer trackers.
- A new loss in TrackPGD loss is proposed to mislead visual trackers in providing an accurate binary mask.
- Experimental results also demonstrate that the perturbations generated by TrackPGD have a great influence on bounding box predictions in tracking benchmarks.

				1 U	J	
Attack Setting	Method	Attack Proxy	MixFormerM	OSTrackSTS	TransT-SEG	RTS
Black-box	IoU CSA	Object bbox Object bbox, heat-maps	\checkmark	\checkmark	\checkmark	$\stackrel{\checkmark}{\times}$
White-box	SPARK RTAA TrackPGD	Regression and classification labels Regression and classification labels Object binary mask	× × ✓	× × ✓	\checkmark	× × ✓

Fine Tuning the hyperparameters

OSTrackSTS

Proposed Method

Our goal is to mislead transformer trackers into predicting inaccurate bounding boxes across video frames.

Algorithm 1 TrackPGD to attack transformer trackers with segmentation capability **Require:** Tracker $\mathcal{F}(\cdot)$, current frame I_{τ} , previous binary mask $M_{\tau-1}$, perturbation range ϵ , step size α , loss trade-offs λ_1 and λ_2 , maximum iteration T, focusing parameter γ , variant of focal loss α_t , probability map p_t 1: $I_{adv}^0 \leftarrow I_{\tau}$ \triangleright initialization 2: $G_{\tau} \leftarrow M_{\tau-1}$ ▷ use last predicted binary mask as ground truth 3: for t = 1 ... T do $M^t \leftarrow \mathcal{F}(I_{adv}^{t-1})$ ▷ predict binary mask $L_{\Delta} \leftarrow L_{\text{SegPGD}}(M^t, G_{\tau}) - L_{\text{SegPGD}}(M^t, 1 - G_{\tau})$ ▷ compute difference of SegPGD losses 5: $L_{\text{focal}} \leftarrow \alpha_t (1 - p_t)^{\gamma} L_{\Delta}$ \triangleright compute focal loss 6: $L_{\text{dice}} \leftarrow 1 - 2 \operatorname{IoU}(M^t, G_\tau)$ ⊳ compute dice loss 7: $L \leftarrow \lambda_1 L_{\text{focal}} + \lambda_2 L_{\text{dice}}$ ▷ compute TrackPGD loss 8: $I_{\text{adv}}^t \leftarrow I_{\text{adv}}^{t-1} + \alpha \operatorname{sign}(\nabla_{I_{\text{adv}}^{t-1}}L)$ ▷ update adversarial example 9: $I_{\text{adv}}^t \leftarrow \phi^\epsilon \left(I_{\text{adv}}^t \right)$ \triangleright clip to the ϵ -ball 10: 11: end for

Role of Difference Loss: L_{Λ}

Main Takeaway. The optimal performance occurs when both loss terms are active with intermediate values, showing that neither term alone achieves the best results.

Object Binary Mask Evaluation

Object Bounding Box Evaluation

Original	$L_{\text{SegPGD}}(M^t, G_{\tau})$	$-L_{\text{SegPGD}}(M^t, 1 - G_{\tau})$	L_{Δ}
85.82	52.86	37.28	30.30

Main Takeaway. Although, the vanilla SegPGD losses also generate inaccurate binary masks, the mask impairment caused by L_{Δ} is significantly greater.

Main Takeaway. The efficacy of TrackPGD is validated through comprehensive experiments on various transformer and nontransformer networks on popular datasets.

Acknowledgments. This work is supported by the DEEL Project CRDPJ 537462-18 funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ), together with its industrial partners Thales Canada inc, Bell Textron Canada Limited, CAE inc and Bombardier inc.

