ZeroComp: Zero-shot Object Compositing from Image Intrinsics via Diffusion ΤΤ UNIVERSITÉ dępix I C Zitian Zhang¹, Frédéric Fortier-Chouinard¹, Mathieu Garon², Anand Bhattad³ & Jean-François Lalonde¹

The **shading** and **shadows** are important when inserting 3D objects into images

Realistic composite

Existing methods require **specialized datasets**, and they fail to preserve **object identity**

Anydoor 23

ControlCom 23

Simulated GT

In this work, we train a **diffusion neural renderer** on intrinsic maps, that achieves zero-shot compositing

Intrinsic maps and RGB images from OpenRooms, 2021

Background

Shading

Prediction

Zero-shot compositing pipeline

The input background image (top-left) is first converted to intrinsic maps using specialized networks (top, in yellow) • The corresponding intrinsics of the 3D object, except for the shading, are rendered with simple shaders (middle, in **blue**). The intrinsic maps are then composited together to obtain the combined instrinsics (bottom, in green). From this, our trained ZeroComp model renders a realistic final composite (top-right).

Background image

Shading mask size

masking radius

Missing/incomplete shadows

Too small

Just right

Realistic shadow

Test dataset for object compositing

Real background images Crops extracted from Gardner et al., 2017

213 publicly available high-quality composites Rendered with the ground truth HDR lighting

Final composite

High quality virtual objects 3D models from Collins et al., 2022

EMLight

User study

- The ground truth composite and method output are randomly shown side by side.
- Observers are asked to select the most realistic image.
- Our method outperformed all baselines in terms of achieving the highest confusion with the ground truth

Material editing

Original

Metallic

Lighting control can be achieved with no retraining by injecting custom shadows during the denoising process of ZeroComp

No shadow conditioning

Object

SpotLight (shadow maps)

zitian.zhang.1@ulaval.ca, frederic.fortier-chouinard.1@ulaval.ca, mathieu.garon@depix.ai, bhattad@ttic.edu, jflalonde@gel.ulaval.ca

ZeroComp

AnyDoor

ControlCom ZeroComp (Ours) Simulated G1

2D compositing

Background

Compositing

Follow-up paper: SpotLight

SpotLight (scribbles)