ECCV20 ONLINE 23-28 AUGUST 2020

16TH EUROPEAN CONFERENCE ON COMPUTER VISION

WWW.ECCV2020.EU

Associative Alignment for Few-shot Image Classification

Arman Afrasiyabi, Jean-François Lalonde, Christian Gagné

https://lvsn.github.io/associative-alignment/

Related works

I) Meta Learning

II) Transfer Learning

Baseline++

Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: The International Conference on Machine Learning (2017) Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems(2017) Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019)

Detecting related bases

Detecting related bases

ECCV'20 Example of related bases

related bases

Associative alignment

Associative alignment

- Centroid Alignment
- Adversarial Alignment

Centroid alignment

Centroid alignment

Adversarial alignment

Adversarial alignment

t-SNE visualization

Experiments

Datasets

- Object recognition

- *mini*lmageNet
- tieredImageNet
- FC100
- Fine-grained classification
 - CUB
- Cross-domain adaptation
 - from *mini*lmageNet to CUB

Backbones

- Conv4
- ResNet-18
- WRN-28-10

minilmageNet and CUB

		$mini ext{-}\mathrm{ImageNet}$		CUB	
\mathbf{Method}		1-shot	5-shot	1-shot	5-shot
ng	Meta-LSTM [36]	43.44	55.31		
rni	$MatchingNet^{\ddagger}$ [47]	43.56	55.31	60.52	75.29
lea	$\operatorname{ProtoNet}^{\ddagger}[42]$	49.42	68.20	51.31	70.77
ta	MAML^{\ddagger} [10]	48.07	63.15	55.92	72.09
me	Relation Net^{\ddagger} [44]	50.44	65.32	62.45	76.11
50	$\operatorname{softmax}^{\dagger}$	46.40	64.37	47.12	64.16
ing	$\mathrm{softmax}^{\dagger\diamond}$	46.99	65.33	45.68	66.94
arn	$\operatorname{cosmax}^{\dagger}$	50.92	67.29	60.53	79.34
le	$\operatorname{cosmax}^{\dagger\diamond}$	52.04	68.47	60.66	79.79
tr.	our baseline (sec. 5)	51.90	69.07	60.85	79.74
šn.	adversarial	52.13	70.78	63.30	81.35
alig	centroid	53.14	71.45	62.71	80.48

Conv4

minilmageNet and tieredImageNet

	mini-ImageNet		tieredImageNet	
Method	1-shot	$5 ext{-shot}$	1-shot	5-shot
LEO [39]	61.76	77.59	66.33	81.44
wDAE $[15]$	61.07	76.75	68.18	83.09
CC+rot [13]	62.93	79.87	70.53	84.98
Robust-dist $++$ [39]	63.28	81.17		
Transductive-ft [7]	65.73	78.40	73.34	85.50
our baseline (sec. 5)	63.28	78.31	68.47	84.11
adversarial alignment	64.79	82.02	73.87	84.95
centroid alignment	65.92	82.85	74.40	86.61

FC100 and CUB

	FC100		CUB	
\mathbf{Method}	1-shot	5-shot	1-shot	5-shot
Robust-20 [8]	_	_	58.67	75.62
GNN-LFT [45]	_	_	51.51	73.11
Relation Net^{\ddagger} [44]	_	_	67.59	82.75
$ProtoNet^{\ddagger} [42]$	40.5	55.3	71.88	87.42
TADAM [33]	40.1	56.1	_	_
$MetaOptNet^{\dagger}$ [24]	41.1	55.5	—	_
MTL [43]	45.1	57.6	_	_
Transductive-ft $[7]$	43.2	57.6	—	—
our baseline (sec. 5)	40.84	57.02	71.71	85.74
adversarial	43.44	58.69	70.80	88.04
centroid	45.83	59.74	$\overline{74.22}$	88.65

ResNet18

Cross domain: from *mini*ImageNet to CUB

Method	1-shot	5-shot	10-shot
$ProtoNet^{\ddagger}$ [49]	_	62.02	_
MAML^\ddagger [10]	—	51.34	—
$RelationNet^{\ddagger}$ [44]	—	57.71	—
Diverse 20 $[8]$	—	66.17	—
$\operatorname{cosmax}^{\dagger}$ [3]	43.06	64.38	67.56
our baseline (sec. 5)	45.60	64.93	68.95
adversarial	44.37	70.80	79.63
centroid	46.85	70.37	79.98
	10.00	10.01	10.00

ResNet18

Our approach:

- prevents overfitting without restricting the learning capacity of the network
- does not need any additional data
- can easily apply to any backbones without any extra learning modules

() https

https://lvsn.github.io/associative-alignment/

Thank you for your attention!