

Associative Alignment for Few-shot Image Classification Arman Afrasiyabi, Jean-François Lalonde, Christian Gagné

MOTIVATION

- We aim at preventing overfitting without restricting the learning capabilities
- Our approach relies on the transfer learning, but it consists of two stages: i) detecting related bases, ii) associative alignment.
- Fine-tuning directly on related base could confuse the network (see fig.(a))

(a) before alignment

(b) after alignment

• We aim to *align*, in feature space, the novel examples with the related base samples (fig.(b))

RESULTS: OBJECT RECOGNITION EVALUATION

		mini-ImageNet		tieredImageNet				mini-ImageNet		tieredImageNet	
	Method	1-shot	5-shot	1-shot	5-shot		Method	1-shot	5-shot	1-shot	5-shot
ResNet-18	ProtoNet [‡] [19]	54.16 ± 0.82	73.68 ± 0.65	61.23 ± 0.77	80.00 ± 0.55	WRN-28-10	LEO [16]	61.76 ± 0.08	77.59 ± 0.12	66.33 ± 0.09	81.44 ± 0.12
	SNAIL [13]	55.71 ± 0.99	68.88 ± 0.92	_	_		wDAE [9]	61.07 ± 0.15	76.75 ± 0.11	68.18 ± 0.16	83.09 ± 0.12
	MTL [20]	61.20 ± 1.80	75.50 ± 0.80	_	—		CC+rot [7]	62.93 ± 0.45	79.87 ± 0.33	70.53 ± 0.51	84.98 ± 0.36
	VariationalFSL [24]	61.23 ± 0.26	77.69 ± 0.17	_	—		Robust-dist++ [16]	63.28 ± 0.62	81.17 ± 0.43	_	_
	MetaOptNet [11]	62.64 ± 0.61	78.63 ± 0.46	65.99 ± 0.72	81.56 ± 0.53		Transductive-ft [4]	65.73 ± 0.68	78.40 ± 0.52	73.34 ± 0.71	85.50 ± 0.50
	our baseline (arcmax)	58.07 ± 0.82	76.62 ± 0.58	65.08 ± 0.19	83.67 ± 0.51		our baseline (arcmax)	63.28 ± 0.71	$78.31{\scriptstyle~\pm 0.57}$	68.47 ± 0.86	84.11 ± 0.65
	adversarial alignment	58.84 ± 0.77	$77.92 \hspace{.1in} \pm \hspace{.1in} 0.82 \hspace{.1in}$	66.44 ± 0.61	85.12 ± 0.53		adversarial alignment	64.79 ± 0.93	82.02 ± 0.88	73.87 ± 0.76	84.95 ± 0.59
	centroid alignment	59.88 ± 0.67	$\textbf{80.35} \pm 0.73$	69.29 ± 0.56	85.97 ± 0.49		centroid alignment	65.92 ± 0.60	82.85 ± 0.55	$\textbf{74.40} \pm 0.68$	$\textbf{86.61} \pm 0.59$
TT 1		• (•	• 1 1	• 1• •• •1		• •	1 (00 1	· • • 1 1 •	1. • 1 110	1 1.1 .1	1 , 1,

Evaluation of 5-way classification accuracy, with \pm indicating the 95% confidence intervals over 600 episodes. The best result is boldfaced, while the best result *prior to this work* is highlighted in blue. Here, "-" indicates when a paper does not report results in the corresponding scenario.

arman.afrasiyabi.1@ulaval.ca, {jean-francois.lalonde, christian.gagne}@gel.ulaval.ca Université Laval

DETECTING RELATED BASES

- Our detecting algorithm associates *B* base classes to each novel class
- train the both of the network and classification layer using base categories
- adapt the last layer using novel categories
- the *B* base classes with the highest score for a given novel class are kept as the related base

figure above shows two examples of novel categories in 5-shot, 5-way, the result of the detection algorithm as related bases for B = 10.

• Tables bellow presents evaluations of the proposed strategies on *mini*-ImageNet and tieredImageNet using a ResNet-18 and WRN-28-10.

CENTROID ALIGNMENT

• Our centroid alignment explicitly push the novel classes towards the center of their related bases • first we compute the centroid of each novel

classes μ_i using parameterized network $f(.|\theta)$

• given novel class \mathcal{X}^n examples and their related bases \mathcal{X}^{rb} , we define the centroid alignment loss:

• where, *N* is the number of all examples

 $\mathcal{L}_{\mathrm{aa}}(\mathcal{X}$

RESULTS: CROSS-DOMAIN

(CUB).

Method	1-shot	5-shot	10-shot
ProtoNet [‡] [23]	—	62.02 ± 0.70	_
MAML [‡] [6]	_	51.34 ± 0.72	_
Diverse 20 [5]	_	66.17 ± 0.73	_
cosmax [†] [2]	43.06 ± 1.01	64.38 ± 0.86	67.56±0.77
our baseline (arcmax)	45.60 ± 0.94	64.93 ± 0.95	$68.95{\pm}0.78$
adversarial	44.37 ± 0.94	70.80 ± 0.83	$79.63{\scriptstyle~\pm 0.71}$
centroid	46.85 ± 0.75	70.37 ± 1.02	$\textbf{79.98} \pm 0.80$

The best result is boldfaced, while the best result prior to this work is highlighted in blue.

ADVERSARIAL ALIGNMENT

• Here, a parameterized critic network $h(\cdot|\phi)$ is conditioned by the concatenation of the feature embedding of either a novel exampl \mathbf{x}_i^n and one of its related class example \mathbf{x}_{i}^{rb} , along with y_{i}^{n}

• after updating the critic network, the encoder parameters θ are updated using the following loss

$$(\mathbf{r}^n) = \frac{1}{K^n} \sum_{(\mathbf{x}_i^n, y_i^n) \in \mathcal{X}^n} h\left([f(\mathbf{x}_i^n | \theta) \ y_i^n] | \phi \right)$$

• Table bellow presents the evaluation on crossdomain from mini-ImageNet to CUB-200-2011