
Introducing a Large Scale 
Photometrically Calibrated 
HDR Dataset.

MOTIVATION: We live in a light field, that impacts our biology and the 
way we interact with our environment.  However, most computer vision 
tasks treat pixels without considering the physical light. To measure 
absolute light quantities, expensive specialized hardware is required.  
Can we develop methods that consider the physical light that lies 
beyond the pixel?

CONTRIBUTIONS: We present the Laval Photometric HDR Dataset, 
the first large scale photometric dataset. We also present three novel 
deep learning tasks aiming to explore the effect of various inputs on 
the predictions.

METHOD
I. Laval HDR Dataset: We calibrate this dataset, which contains 

over 2300 indoor HDR panoramas up to scale.
II. Setup:  The Canon 5D captures a HDR bracket and the CL-200a 

measures the absolute illuminance
III. HDR illuminance:  The HDR image is integrated to compute the 

scene illuminance. This value can be compared to the chroma 
meter measurement.

IV. Comparison HDR—Chroma meter: Repeating this process for 
over 120 scenes, a linear relation arises between the HDR and 
true illuminance. The slope of the regression for each channel is 
applied to the original dataset to obtain photometric HDR values.
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Figure 7. Examples of color prediction. The first row indicates the RMSE percentile: the RMSE (relative error). The “input” is the
calibrated HDR reexposed, clipped, with a random WB augmenter [2]. Other rows show the ground truth and predicted CCT maps, and
the relative error map. Colormaps for both the CCT and the relative error are shown at the right.

values from images captured with another camera. To this
end, we rely on the Ricoh Theta Z1, an off-the-shelf 360�
camera, and captured a small dataset of 74 calibrated HDR
panoramas (referred to as “Theta dataset”) using the same
process as in sec. 3. In addition to the bracketed RAW im-
ages, we also capture well-exposed LDR images (in jpeg
format) produced by the camera. This small experimen-
tal dataset will also be released publicly. As opposed to
[46] which calibrated this camera for photometric measure-
ments, we calibrate for color as well as luminance.

Architecture and data The network architecture for each
task is kept the same as in sec. 5. The networks are first
trained on the calibrated Laval dataset with synthetically de-
graded LDR inputs (all degradations). The Theta dataset is
split 40%-10%-50% for train-val-test respectively. The pre-
trained networks are then fine-tuned on the Theta dataset
(with jpeg images as input) with the same learning rate.

Experimental results Tab. 3 shows the results of the ex-
periments for each task (cf. sec. 5.1). We experiment with
a degraded LDR as input to the models pretrained on our
dataset and the jpeg image of the camera as input to the pre-
trained and fine-tuned models. The input images have 120�

FOV for the planar illuminance prediction task, and all jpeg
images are captured with the same white balance setting.

Directly providing the jpeg images as inputs to the pre-
trained model (2nd row in tab. 3) results in significantly de-
graded performance across most tasks as compared to using
degraded LDR images. This shows that the domain gap be-
tween produced jpeg images and simulated LDR images is
still wide. Fine-tuning the networks on jpeg inputs is there-
fore necessary to obtain performance similar or sometimes
slightly better than those obtained on the synthetic LDR.

Luminance Color Illuminance

Input RMSE# siRMSE# HV3" RMSE# rel "# RMSE# R2
"

PT LDR 130.6 86.9 95.5 334.0 11.97 153.2 0.469
PT Jpeg 170.0 100.6 90.3 676.4 25.06 141.9 0.314
FT Jpeg 156.7 96.4 91.4 177.9 5.52 143.3 0.385

Table 3. Domain adaptation on a real-world dataset for which a
jpeg image of a scene, as well as the calibrated luminance map, are
captured with a Ricoh Theta Z1. Here, “HV3” refers to the HDR-
VDP-3 metric [48]. We report performance on all three tasks from
sec. 5.1. Each row corresponds to degraded LDR and jpeg as input
to the pretrained model (“PT LDR” and “PT Jpeg” resp.), and jpeg
as input to the fine-tuned model (“FT Jpeg”).

7. Conclusion

We present the Laval Photometric Indoor HDR Dataset,
the first photometrically accurate, large-scale dataset of
HDR panoramic images. Our calibration method relies on
a carefully curated calibration dataset of RAW exposure
brackets captured with the original camera and a chroma
meter. We also capture another small calibrated dataset
with a Ricoh Theta Z1 for experiments on jpeg inputs. We
present baselines for three novel tasks: per-pixel luminance,
per-pixel color and planar illuminance predictions. We hope
this new dataset will spur and catalyze research by empow-
ering others to explore novel photometric and colorimetric
tasks in computer vision, such as white balance prediction
under multiple illuminations, physically based inverse ren-
dering and ”in the wild” image relighting.
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Figure 7. Examples of color prediction. The first row indicates the RMSE percentile: the RMSE (relative error). The “input” is the
calibrated HDR reexposed, clipped, with a random WB augmenter [2]. Other rows show the ground truth and predicted CCT maps, and
the relative error map. Colormaps for both the CCT and the relative error are shown at the right.
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Figure 8. Examples of per-pixel luminance prediction. The first row indicates the RMSE percentile: the RMSE (relative error). The “input”
is the calibrated HDR reexposed and clipped. Other rows show the ground truth and predicted photopic luminance maps. The colormap
for the luminance is shown at the right.

Figure 9. Test scores of color prediction with inputs at different
white balance corrections with two different photofinishing pro-
files. The network is trained on all input corrections.
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Figure 10. Examples planar illuminance prediction with FOV of 120�. The first row indicates the RMSE percentile: the RMSE. Below are
the calibrated HDR hemispheres reexposed and clipped, with the field of view of the image below outlined in red. Below is the projected
HDR hemisphere reexposed and clipped given to the network. The last row shows the ground truth and predicted scalars planar illuminance
respectively.
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Figure 3. Example scenes with mean spherical illuminance (MSI) close to the quantile values. Greyscale images below show the corre-
sponding log-luminance maps (color scale shown on the right). The percentiles and corresponding measured MSI are indicated above the
images. Images are reexposed and tonemapped (� = 2.2) for display.
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Figure 4. Example scenes with CCT close to the quantile values. Colored images below show the CCT map of the scenes, with corre-
sponding scale shown on the right. The percentiles and corresponding measured scene CCT are indicated above the images. Images are
reexposed and tonemapped (� = 2.2) for display.

a very high CCT, due to the blue color of the sky, compared
to the other lateral windows, indicating that the orientation
in space of the window (and the view accessible from it) has
an impact on the spectral properties of the light in the scene.

5. Learning to predict photometric values

Our main goal is to develop algorithms that perform
physically accurate lighting predictions from real-world
photographs captured “in the wild.” It is our hope that the
proposed Laval Photometric Indoor HDR Dataset helps the
community make strides towards this goal. Here, we intro-
duce new tasks that are enabled by our dataset, and analyze
the conditions necessary for accurate light prediction.

5.1. Prediction tasks

We present three novel learning tasks that are enabled by
our dataset. Given a single image as input, each task aims
to predict the following values.

1. Per-pixel luminance: we wish to recover the lumi-
nance (in cdm�2) at each pixel in the input. For clarity,
losses are attributed independently to two subtasks: extrap-
olating HDR values from LDR inputs (similar to [45], see
sec. 2); and predicting the scalar exposure to appropriately
scale the HDR values to luminance. Here, we wonder how
different degradations (e.g. noise, quantization, tonemap-
ping) on the input affect the prediction.

2. Per-pixel color: we wish to estimate the color at each
pixel in the input by predicting its CCT. We augment the
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