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1 OVERVIEW

These supplementary materials present the following addi-
tional results:

• Fig. 1 of the current document presents additional
qualitative results on horizon estimation to complement
fig. 2 from the main paper;

• Fig. 2 of the current document presents additional
qualitative results for the network feature analysis to
complement fig. 4 from the main paper;

• Fig. 3 of the current document presents a comparison of
the network feature analysis before and after training,
to complement fig. 4 from the main paper.

• Fig. 4 of the current document presents additional
undistortion results to complement fig. 9 from the main
paper;

• Fig. 5 and fig. 6 of the current document present exam-
ples of failure cases, for images with camera parameters
outside of the ranges seen during training, and for
images where the principal point is not in the middle.

• Sec. 7 provide the training details used to obtain out
model.

• Sec. 8 of the current document presents derivations of
equations for intrinsic parameters as well as relation-
ships between them, extending sec. 3 of the main paper;

• Sec. 5 and table 1 presents the methodology used to
compare state-of-the-art calibration methods as well as
the estimated parameters by each method, extending
sec. 5.3 and table 2 from the main paper;

• Fig. 7-10 of the current document presents additional
user study results, comparing different parameters
combinations and extending fig. 8 from the main paper;

• Sec. 9 shows an example of geometrically consistent
object transfer as described in sec. 7 of the main paper;

• Fig. 12 of the current document illustrates our quantita-
tive perceptual measure described in sec. 6.5 of the main
paper.
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Ground truth Ours UprightNet Upright Deephorizon SVA

Fig. 1. Additional results of horizon line estimation randomly selected from our test set to complement fig. 2 from the main paper. We provide the
ground truth field of view to UprightNet [1]. Only our method and SVA [2] allow for curved horizon lines (due to large distortions). Note how Upright
and SVA perform well when sharp human-made objects are present in the scene, whereas deep learning methods offer a more robust performance
across all scenes. Note also that SVA fails on 49% of our test images.
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Fig. 2. Additional results for the analysis of the neural network focus to complement fig. 4 from the main paper. The result of smoothed guided
backpropagation is displayed as a jet overlay, and the estimated horizon line is shown in blue.
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(a) (b)

Fig. 3. Comparison of the neural network focus, when pretrained on ImageNet (left); and after being trained on our dataset (right). The result of
smooth guided backpropagation is displayed as a jet overlay, on images with and without clear vanishing lines (resp. (a) and (b)). We can see that the
network learns to ignore objects like trees or clouds, and focuses instead on vanishing lines or sky/land boundaries, which provide more clues about
the location of the horizon line.



5

hθ = 143◦, ξ = 0.92 hθ = 135◦, ξ = 0.96

hθ = 149◦, ξ = 0.79 hθ = 131◦, ξ = 0.85

hθ = 124◦, ξ = 0.81 hθ = 115◦, ξ = 0.98

hθ = 122◦, ξ = 0.86 hθ = 92◦, ξ = 0.83

hθ = 114◦, ξ = 0.94 hθ = 122◦, ξ = 0.86

hθ = 134◦, ξ = 0.70 hθ = 139◦, ξ = 0.98

hθ = 137◦, ξ = 0.74 hθ = 149◦, ξ = 0.93

Fig. 4. Additional results for the automatic undistortion results on images in the wild to complement fig. 9 from the main paper, with the estimated field
of view hθ and distortion ξ. Left: Original image. Right: output of our algorithm.
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Method f distortion parameters
model-dependent (see text)

avg err
(px)

Avenir 2.8mm Ours 1288 ξ = 0.69 0.64
Mei [3] 1973 ξ = 1.48 0.12
Division [4] N/A N/A N/A
Brown [5] 796 Kn = -0.30, 0.17, -0.00, -0.00, -0.07 0.20
Scaramuzza [6] 788 an = -788.50, 0, 3.55−4, 2.11−7, −2.62−10 1.01

Avenir 4mm Ours 1485 ξ = 0.37 0.57
Mei 2270 ξ = 0.97 0.13
Division N/A N/A N/A
Brown 1158 Kn = -0.27, 0.28, 0.00, 0.00, -0.21 0.29
Scaramuzza 1157 an = -1157, 0.00, 2.89−4, −2.45−7, 1.79−10 0.54

GoPro Ours 1182 ξ = 0.82 1.11
Mei 1561 ξ = 1.28 0.12
Division 787 λn = 0.15, -0.77, 1.61, -0.98 0.70
Brown N/A N/A N/A
Scaramuzza 791 an = -791.4, 0.00, 0.00, −1.12−6, 3.10−10 0.82

Fisheye Ours 850 ξ = 0.85 1.25
Mei 1351 ξ = 1.79 0.10
Division 488 λn = -0.09, 0.65, -1.79, 1.13 1.05
Brown N/A N/A N/A
Scaramuzza 487 an = -487.7, 0, 8.18−4, −4.39−7, 4.32−10 1.48

TABLE 1
Camera calibration estimations for different cameras and calibration methods, including the estimated focal length f , the model-dependent distortion
parameters, and the average pixel reprojection error. Please note that all the methods use multiple checkerboard pictures, except ours which require
a single picture of a general scene. Both our method and Mei’s [3] employ the spherical lens model parameterized by ξ (see sec. 3 of the main paper),
while Fitzgibbon’s division model [4], Brown’s polynomial model [5] and Scaramuzza’s toolbox [6] use sequences of real numbers to parameterize the

radial distortion. We refer the reader to each publication for their respective definition of λ, Kn and an. Failures cases are noted N/A.

5 COMPARISON TO STATE-OF-THE-ART CALIBRA-
TION METHODS

We provide the estimated parameters of each lens model
as well as the average pixel reprojection error in table 1,
extending the results from sec. 5.3 and table 2 of the main
paper. In the following, we describe our methodology and
capture setup for this experiment.

We experimented with four camera setups. The first three
setups consist of a PointGrey Flea3 camera with a 1328×1048
resolution and equipped with three different lenses: 1) an
Avenir 2.8mm providing a wide FoV, 2) an Avenir 4mm, 3) a
GoPro HERO6 at a resolution of 1920× 1080px, and 4) a Fu-
jinon fisheye lens 1.8mm with a FOV over 180◦. To calibrate
the cameras with existing methods based on checkerboards,
we acquired about 30 pictures of checkerboard per camera,
while we provided a single image of general scene per
camera for our method (see images in the left column of
Table 1). To compare the quality of the calibration results, we
measure and report the reprojection error as reported by the
calibration toolboxes. To compute the reprojection error of
our approach, we input our calibration parameters (estimated
from a single image) into Mei’s toolbox and performed a pose-
only bundle adjustment on the same checkerboard images
(i.e., our parameters f and ξ, as well as the principal point
(u0, v0), are not optimized).

As can be seen in the results, the conventional Brown
model works well for most cameras but it is not suitable
to map the distortion induced by a fisheye lens [7], which
fails to converge on the GoPro and Fisheye cases. In practice,

the automatic process in OpenCV Brown skipped around
half of the calibration images for the GoPro camera and the
Fujinon fisheye lens, which confirms that Brown’s model is
not adapted to wide FOV cameras. Alternatively, Fitzgibbon’s
division model [4]—also called the Fisheye calibration in
OpenCV—fails to converge on the images taken with the
Avenir lenses due to the low amount of distortion present
in those images. However, it provides competitive accuracy
on images with strongly visible distortion artifacts, such as
the pictures taken with a GoPro and the Fisheye. Overall,
most of the existing toolboxes obtains a sub-pixel accuracy.
Despite providing slightly less accurate results than those
existing toolboxes, our method still provides competitive
results (between 1/2px and 1px average reprojection error)
across a large diversity of lenses using a single image in the
wild as input, without calibration marker.

Finally, we would like to emphasize that our work does
not aim to compete with checkerboard based approaches in
terms of accuracy, but rather aims to provide a solution for
camera calibration where traditional techniques cannot be
applied, for example a single image in the wild, devoid of
calibration reference.
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(a) Extreme pitch

(b) Extreme roll

(c) Extreme distortion (catadioptric images)

Fig. 5. Examples of failure cases for images with camera parameters
outside of the ranges seen during training. Left: estimated horizon line.
Right: undistortion result.

Fig. 6. Examples of failure cases when the principle point is not in the
center of the image. Left: estimated horizon line. Right: undistortion
result.
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Fig. 7. Influence of parameter errors between themselves on human sensitivity to errors. We bin the percentage of people choosing the ground truth
per image of the user study. The colors in the plot represents the median over all values in each bin. 100% (yellow) means humans always detect the
distortion, 50% (blue) means total confusion, where humans statistically selects the distorted image as often as the ground truth.

Fig. 8. Influence of parameter errors wrt. other parameter values on human sensitivity to errors.

Fig. 9. Influence of parameter values wrt. other parameter errors on human sensitivity to errors.

Fig. 10. Influence of parameter values between themselves on human sensitivity to errors. Note how when the roll parameter has a value very close
to 0◦, humans could detect distortions more easily, whereas larger roll value (image tilted around the viewing axis) yields lower detection rate by
humans.
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7 TRAINING DETAILS

To train our model, we sum the Kullback-Leibler divergence
computed on each output head and its corresponding
ground truth (encoded as one-hot vectors) and use it as
loss to train the model, which is minimized using stochastic
gradient descent with the Adam optimizer [8] with an initial
learning rate of η = 0.001 and a learning rate decay of
α = 0.0002. Training is performed on mini-batches of 42
images. Convergence is observed through early stopping
typically after 9–10 epochs. We also trained our method with
the field loss proposed in [9] and, despite an initial training
instability alleviated with per-parameter pretraining, found
no significant changes in test accuracy with our method.

8 INTRINSIC PARAMETERS DERIVATIONS AND RE-
LATIONSHIPS

The spherical lens model used by our method has two
degrees of freedom with respect to the camera intrinsics,
despite having three explicit parameters. In the following,
we first define the spherical lens model. We then describe
how to compute either the focal length f , the distortion ξ or
the effective horizontal field of view hθ from the two other
parameters.

8.1 Perspective model: focal length f and image resiz-
ing

First, we consider the pinhole model without lens distortion
ξ=0. The intrinsic calibration matrix is defined as

K =

f 0 u0

0 f v0
0 0 1

 . (1)

In full resolution, a world point [X,Y, Z] is projected to the
image plane in pixels by

xy
w

 = K

XY
Z

 (2)

i.e.

[
x
y

]
=

[
fX
Z + u0
fY
Z + v0

]
(3)

If we resize the image by a factor s, then this pixel is
now at [x′, y′] = [x/s, y/s), and the image center is not at
[u0/s, v0/s). Let’s denote f ′ the “new” focal length and

K′ =

f ′ 0 u′
0

0 f ′ v′0
0 0 1

 =

f ′ 0 u0/s
0 f ′ v0/s
0 0 1

 , (4)

yielding [
x′

y′

]
=

[
f ′X
Z + u′

0
f ′Y
Z + v′0

]
=

[
f ′X
Z + u0/s
f ′Y
Z + v0/s

]
. (5)

It follows from x/s = f ′X
Z + u0/s and x = fX

Z + u0 that
f ′ = f/s.

In summary, resizing the image by a scaling factor s also
scales its focal length f by 1/s.

8.2 Sphere model: focal length f and distortion ξ

In the remainder of this section, we focus on defining the
spherical lens model and establish relationships between its
intrinsic parameters.

A point in 3D space [X,Y, Z] is projected to the pixel
p = [x, y] on the image plane using the relation

x =
Xf

ξ
√
X2 + Y 2 + Z2 + Z

+ u0

y =
Y f

ξ
√
X2 + Y 2 + Z2 + Z

+ v0, (6)

The inverse transform, mapping an image point to a point
on the unit sphere of the lens model, is defined as

Ps = (ωx̂, ωŷ, ω − ξ) (7)

with ω =
ξ +

√
1 + (1− ξ2)(x̂2 + ŷ2)

x̂2 + ŷ2 + 1
,

and [
x̂, ŷ, 1

]T ≃ K−1p, (8)

where K is defined in eq. (1).
When the image is resized by a scaling factor s, then a

pixel is now at [x′, y′] = [xs ,
y
s ] and the image center is at

[u0

s , v0
s ]. Denoting the unknown resulting focal length f ′ and

distortion parameter ξ′, we have

p′ = [x′, y′] = [
x

s
,
y

s
]

=

[
Xf ′

ξ′
√
X2 + Y 2 + Z2 + Z

+ u′
0,

Y f ′

ξ′
√
X2 + Y 2 + Z2 + Z

+ v′0

]

=

[
Xf ′

ξ′ + Z
+ u′

0,
Y f ′

ξ′ + Z
+ v′0

]
=

[
Xf ′

ξ′ + Z
+

u0

s
,

Y f ′

ξ′ + Z
+

v0
s

]
. (9)

To have [x′, y′] = [xs ,
y
s ] for all [X,Y, Z], we need(

Xf ′

ξ′ + Z
,

Y f ′

ξ′ + Z

)
=

[
1

s

(
Xf

ξ + Z

)
,
1

s

(
Y f

ξ + Z

)]
. (10)
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(a) (b)

Fig. 11. Testing the intrinsic parameters wrt image resizing. From an
original image (a) with known focal length f and distortion ξ, we back-
projected the image pixels to the sphere of our model and re-projected
them (b) to a image plane resized by a scaling factor s, using the new
effective focal length f ′ = f

s
and keeping the same ξ. This resulting

image (b) is identical to the original (a) up to interpolation noise.

One possible solution is to have f ′ = f/s and ξ′ = ξ. It is
important to note that this is not the only possible solution,
as a family of solutions can be derived from those equations.

Fig. 11 shows an example of image resizing, where the
original image (left) has been back-projected to the sphere
and re-projected onto a new image plane with a different
focal length f

s while keeping ξ the same. As can be seen,
both images are identical (up to interpolation noise), offering
an empirical validation to our derivations.

8.3 Compute hθ from f and ξ

We assume that the image size in pixels H ×W is known
and the image principal (center) point is at the center of the
image [u0, v0] = [W/2,H/2].

Projecting the center point [u0, v0] onto the sphere by
applying the camera intrinsics matrix K−1 and projecting it
to the image plane, we obtain

P0 = [0, 0, 1]. (11)

Projecting the “left point” [0,H/2] = [0, v0] in the
same way, we obtain a position on the sphere [x̂, ŷ, ŵ] =
[−u0/f, 0, 1], and a position on the unit sphere

Ps =

[
ωx̂, 0,

ξ +
√
1 + (1− ξ2)x̂2

x̂2 + 1
− ξ

]
, (12)

for a given factor ω. We can obtain the field of view hθ by
doubling the subtended angle between P0 and Ps as

hθ = 2arccos (P0 · Ps)

= 2 arccos

(
ξ +

√
1 + (1− ξ2)x̂2

x̂2 + 1
− ξ

)
, (13)

where x̂ = −u0/f .
Note that if u0 (i.e. the image size) and f are scaled or

resized by the same value s, then the field of view does not
change for a given fixed ξ.

8.4 Using hθ, compute ξ from f or vice-versa
The central point projected to the image plane is P0 = [0, 0, 1],
(see sec. 8.3). We can define the x-axis component of the “left
point” using

X = − sin

(
hθ

2

)
. (14)

Since the spherical lens model uses a unit sphere X2+Z2 = 1,
we obtain

Z = ±
√
1−X2. (15)

The left point projected to the image plane can be
expressed as

[0, v0] =

[
Xf

ξ + Z
+ u0,

Y f

ξ + Z
+ v0

]
. (16)

The horizontal field of view hθ is defined as the angle
subtended by the spherical points on the horizon plane X-Z,
which means Y = 0, hence Y f

ξ·1+Z +v0 = 0+v0 = v0, validat-
ing eq. (16). For X , we have the relationship Xf

ξ·1+Z + u0 = 0.
Given ξ, we obtain

f = −u0
ξ + Z

X
, (17)

where X and Z are known given the effective horizontal
field of view hθ . Similarly, given f , we obtain

ξ =
Xf + u0Z

−u0
. (18)

8.5 Compute the image midpoint vm using f and the
camera pitch θ

As in the previous sections, we assume the image size in
pixels H × W is known and the camera principal (center)
point to be in the middle of the image [u0, v0] = [W/2,H/2].

The central point projected to the image plane is P0 =
[0, 0, 1], (see sec. 8.3). Rotating the central point on the sphere
by the camera pitch (elevation) angle θ, we obtain

Ps =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

00
1


=

 0
− sin θ
cos θ

 .
Projecting on the image plane, we obtain get

[x, y] =

[
u0,

−f sin θ

ξ + cos θ
+ v0

]
. (19)

The midpoint is thus

vm = −f
sin θ

ξ + cos θ
+ v0. (20)

Note that if we set ξ = 0, we obtain vm = −f tan θ + v0,
the usual equation for perspective images without radial
distortion.
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Fig. 12. Visualization of the quantitative perceptual measure described in sec. 6.5 of the main paper. Clockwise from the top-left: pitch, roll, distortion
and field of view functions. All functions are computed by binning the perceptual data into a 7× 7 histogram on the 2D space of errors and absolute
parameter, and piece-wise linear functions are then fitted on the binned data. Lower is better, as a perceptual measure of 50% means the network
can fool a human.
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9 GEOMETRICALLY-CONSISTENT OBJECT TRANS-
FER

Transferring objects from one image to another requires
matching the camera parameters. While previous techniques
required the use of objects of known height in the image
in order to infer camera parameters [10], our approach
estimates them from the image itself, and can be used to
realistically transfer objects from one image to another, as
shown in fig. 13. In this example, we obtained the parameters
of the background scene and sought an image with similar
parameters, which gave us an image with a water tower.
Despite the differences in lighting between the water tower
and the background scene, note that simply copying pixels
between the two matching images keeps the perspective
correct. The foreshortening and orientation of the water tower
matches well the scene, which provides a good starting point
for an artist to work on this composite image.

Fig. 13. The water tower from fig. 10 of the main paper (bottom row)
pasted onto an image with an automatically detected similar horizon line.
Note how the perspective looks right without modification.
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