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Abstract

Relighting is an essential step in realistically transferring
objects from a captured image into another environment.
For example, authentic telepresence in Augmented Reality
requires faces to be displayed and relit consistent with the
observer’s scene lighting. We investigate end-to-end deep
learning architectures that both de-light and relight an image
of a human face. Our model decomposes the input image
into intrinsic components according to a diffuse physics-
based image formation model. We enable non-diffuse effects
including cast shadows and specular highlights by predicting
a residual correction to the diffuse render. To train and
evaluate our model, we collected a portrait database of 21
subjects with various expressions and poses. Each sample is
captured in a controlled light stage setup with 32 individual
light sources. Our method creates precise and believable
relighting results and generalizes to complex illumination
conditions and challenging poses, including when the subject
is not looking straight at the camera.

Supplementary material can be found on our project page
https://lvsn.github.io/face-relighting

1. Introduction
In recent years Augmented Reality (AR) has seen

widespread interest across a variety of fields, including gam-
ing, communication, and remote work. For an AR expe-
rience to be immersive, the virtual objects inserted in the
environment should match the lighting conditions of their
observed surroundings, even though they were originally
captured under different lighting. This task, known as re-
lighting, has a long history in computer vision with many
seminal works paving the way for modern AR technolo-
gies [2, 3, 21, 34, 39].

Relighting is often represented as a physics-based, two-
stage process. First, de-light the object in order to recover
its intrinsic properties of reflectance, geometry, and light-
ing. Second, relight the object according to a desired target
lighting. This implies an exact instantiation of the rendering
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Figure 1: Overview. Given an unseen input image (a) from
the test set that was lit by the according directional light `src
above it, we relight it towards the directional light `dst in (b).
To judge the performance, we provide the corresponding
ground truth image in (c).

equation [17] operating on lighting and surface reflectance
representations capable of capturing the true nature of the
light-material-geometry interactions. In practice, errors oc-
cur due to imperfect parametric models or assumptions.
One common approximation is to assume diffuse materi-
als [2, 39]. Another approximation is smooth lighting, e.g.
modeled as low-order spherical harmonics, which cannot
produce hard shadows cast from point light sources like the
sun. We consider the hard problem of relighting human
faces, which are known for both their complex reflectance
properties including subsurface scattering, view-dependent
and spatially-varying reflectance, but also for our perceptual
sensitivity to inaccurate rendering. Recent image-to-image
translation approaches rely on deep learning architectures
(e.g. [16]) that make no underlying structural assumption
about the (re)lighting problem. Given enough representa-
tional capacity an end-to-end system can describe any un-
derlying process, but is prone to large variance due to over-
parameterization, and poor generalization due to physically
implausible encodings. Test-time manipulation is also diffi-
cult with a semantically meaningless internal state. While
this could potentially be alleviated with more training data,
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acquiring sufficient amounts is very time consuming.
Recent approaches have demonstrated that explicitly in-

tegrating physical processes in neural architectures is ben-
eficial in terms of both robust estimates from limited data
and increased generalization [25, 39, 43]. However, these ap-
proaches have focused on the de-lighting process, and use the
simplified physical models for relighting that do not model
non-diffuse effects such as cast shadows and specularities.

In this work, we bridge the gap between the expressive-
ness of a physically unconstrained end-to-end approach and
the robustness of a physics-based approach. In particular, we
consider relighting as an image-to-image translation prob-
lem and divide the relighting task into two distinct stages: a
physics-based parametric rendering of estimated intrinsic
components, and a physics-guided residual refinement. Our
image formation model makes the assumption of directional
light and diffuse materials. The subsequent refinement pro-
cess is conditioned on the albedo, normals, and diffuse ren-
dering, and dynamically accounts for shadows and any re-
maining non-diffuse phenomena.

We describe a neural architecture that combines the
strengths of a physics-guided relighting process with the
expressive representation of a deep neural network. Notably,
our approach is end-to-end trained to simultaneously learn to
both de-light and relight. We introduce a novel dataset of hu-
man faces under varying lighting conditions and poses, and
demonstrate our approach can realistically relight complex
non-diffuse materials like human faces. Our directional light-
ing representation does not require assumptions of smooth
lighting environments and allows us to generalize to arbitrar-
ily complex output lighting as a simple sum of point lights.
To our knowledge, this is the first paper showing realistic
relighting effects caused by strong directional lighting, such
as sharp cast shadows, from a single input image.

2. Related work
Intrinsic images. Intrinsic image decomposition [3] and
the related problem of shape from shading [57] have inspired
countless derived works. Of interest, [2] propose to simulta-
neously recover shape, illumination, reflectance and shading
from a single image and rely on extensive priors to guide
an inverse rendering optimization procedure. Other meth-
ods recover richer lighting representations in the form of
environment maps given the known geometry [26]. More re-
cent approaches rely on deep learning for the same task, for
example using a combination of CNN and guided/bilateral
filtering [31] or a pure end-to-end CNN approach [10] with
the common problem of hard to come by training data. Avail-
able datasets may include only sparse relative reflectance
judgements [4], or sparse shading annotations [20], which
limits learning and quantitative evaluation.

While many previous works focus on lighting estimation
from objects [2, 12, 26, 29] or even entire images [11, 15, 18,

54, 55], few papers explicitly focus on the relighting prob-
lem. Notably, [36] use a small number of images as input,
and, more recently, [52] learn to determine which set of five
light directions is optimal for relighting. Image-to-image
translation [16] combined with novel multi-illumination
datasets [30] has lately demonstrated promising results in
full scene relighting.

The explicit handling of moving hard shadows in [9]
and [35] is relevant. While both use multi-view inputs to
relight outdoor scenes, our method works on a single input
image to relight faces (our multi-view setup is only used to
capture training data). Similar to our work, [53] regress to
intrinsic components like albedo and normals, but their illu-
mination model is spherical harmonics and therefore does
not handle shadows. [38] recently proposed a residual appear-
ance renderer which bears similarities to our learned residual
in that it models non-Lambertian effects. Both of the lat-
ter works optimize for intrinsic decomposition, whereas we
learn end-to-end relighting. Our intrinsic components are
only used as a meaningful intermediate representation.

Face relighting. Lighting estimation from face images of-
ten focuses on normalization for improving face recognition.
For example, [50] use spherical harmonics (SH) to relight a
face image, and [47] use a Markov random field to handle
sharp shadows not modeled by low-frequency SH models.
Other face modeling methods have exploited approximate
lighting estimates to reconstruct the geometry [23, 45] or
texture [24]. In computer graphics similar ideas have been
proposed for face replacement [5,8]. Low-frequency lighting
estimation from a face has been explored in [19, 40, 41]. In
contrast, [32] note that eyes reflect our surroundings and can
be used to recover high frequency lighting. More closely
related to our work, [7] learn the space of outdoor lighting
using a deep autoencoder and combine this latent space with
an inverse optimization framework to estimate lighting from
a face. However, their work is restricted to outdoor lighting
and cannot be used explicitly for relighting.

Of particular relevance to our work, neural face edit-
ing [43] and the related SfSNet [39] train CNNs to decom-
pose a face image into surface normals, albedo, and SH
lighting. These approaches also impose a loss on the intrin-
sic components, as well as a rendering loss which ensures
that the combination of these components is similar to the
input image. FRADA [22] revisited the idea of relighting
for improving face recognition with face-specific 3D mor-
phable models (similar to [43]), while we do not impose
any face-specific templates. Single image portrait relight-
ing [58] bypasses the need for decomposition, while still
estimating the illumination to allow editing. In a similar
line of work, [44] capture faces in a light stage using one
light at a time, but then train using smoother illuminations
from image based rendering which leads to artifacts when
exposed to hard cast shadows or strong specularities. Re-



cently, [28] also used light stage data and train to relight
to directional lighting as we do. However, their network
expects a pair of images captured under spherical gradient
illumination at test time, which can only be captured in a
light stage. The portrait lighting transfer approach of [42]
directly transfers illumination from a reference portrait to
an input photograph to create high-quality relit images, but
fails when adding/removing non-diffuse effects.

3. Architecture
The following two sections first introduce an image for-

mation process (Sec. 3.1) and then describe its integration
into a physics-based relighting architecture (Sec. 3.2).

3.1. Image formation process

The image formation process describes the physics-
inspired operations transforming the intrinsic properties of
a 3D surface to a rendered output. The majority of physics-
based works are based on specific instantiations of the ren-
dering equation [17],

Lo(ωo) =

∫

ωi∈Ω

f(ωi, ωo)Li(ωi)〈n, ωi〉 dωi, (1)

where ωi, ωo are the incoming and outgoing light direc-
tions relative to the surface normal n at the surface point
Xj . Li(ωi) and Lo(ωo) are the corresponding (ir)radiances,
f(·, ·) is the BRDF describing the material’s reflectance prop-
erties, and 〈n, ωi〉 is the attenuating factor due to Lambert’s
cosine law.

This model is often simplified further by assuming a
diffuse decomposition into albedo a ∈ R and shading s ∈ R,

a = f(ωi, ωo), [const.] (2)

s =

∫

ωi∈Ω

Li(ωi)〈n, ωi〉 dωi. (3)

Non-diffuse effects. A realistic relighting approach must
relax modeling assumptions to allow complex reflectance
properties such as subsurface scattering, transmission, po-
larization, etc., and if using (2) specularities. Unfortunately,
learning a spatially varying BRDF model f(ωi, ωo) based
on a non-parametric representation is infeasible: assuming
an image size of 512 × 768 and a pixelwise discretization
of the local half-angle space [27] would result in 1.7× 1012

parameters. Learning a low-dimensional representation in
terms of semantic parameters [6] seems like a viable alter-
native but is still prone to overfitting and cannot account for
light-material-interactions outside of its parametric space.

We propose a hybrid approach and decompose f into
two principled components, a diffuse albedo a and a light-
varying residual r:

f(ωi, ωo) = a+ r(ωi, ωo). (4)

This turns (1) into

Lo(ωo) = as+

∫

ωi∈Ω

r(ωi, ωo)Li(ωi)〈n, ωi〉 dωi. (5)

For a light source with intensity I(ωi), we can identify
Li(ωi) = I(ωi)v(ωi), where v ∈ {0, 1} is the binary visibil-
ity of the light source. Under the assumption of a single direc-
tional light source from ω̃i, we integrate over one point only,
so if we further write r̃(ω̃i, ωo) = r(ω̃i, ωo)I(ω̃i)〈n, ω̃i〉,
we can re-formulate our rendering equation (1) to

Lo(ωo) = (as+ r̃(ω̃i, ωo)) · v(ω̃i). (6)

This will be the underlying image formation process in all
subsequent sections. While as captures much of the diffuse
energy across the image according to an explicit generative
model, the residual r̃(ω̃i, ωo) accounts for physical effects
outside of the space representable by (2) and is modeled
as a neural network (akin to [38]). We do not impose any
assumptions on r(ω̃i, ωo), even allowing light subtraction,
but do enforce a to be close to the ground truth albedo of a
diffuse model which we obtain from photometric stereo [51].

Discussion. While directional lights are conceptually sim-
ple, they lead to challenging relighting problems. Our com-
bination of an explicit diffuse rendering process and a non-
diffuse residual (with implicit shading) serves several pur-
poses: (1) Describing most of the image intensities with a
physics-based model means the output image will be more
consistent with the laws of physics; (2) Describing specu-
lar highlights as residuals alleviates learning with a CNN;
(3) Leaving the residual unconstrained (up to ground truth
guidance) allows us to model effects that are not explain-
able by the BRDF, such as subsurface scattering and indirect
light; (4) Modeling visibility explicitly helps, because the
simple diffuse model does not handle cast shadows. At the
same time, expecting the residual to take care of shadow
removal by resynthesis is much harder than just masking it.

3.2. Physics-guided relighting

Presented with an input image Isrc that was lit by an input
illumination `src, our goal is to learn a generator G, relighting
Isrc according to a desired output illumination `dst,

G(Isrc, `src, `dst) = Idst. (7)

At training time, we assume `src and `dst to be directional
lights, which is known to be a particularly challenging in-
stance of relighting and accurately matches our captured
data (see Sec. 4). At test time, this is not a limitation, since
we can easily fit a set of directional lights to an environment
map to perform more complex relighting (see Sec. 6).

Our physics-guided approach to solving the relighting
task consists of a recognition model inferring intrinsic com-
ponents from observed images (de-lighting) and a generative
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Figure 2: Physics-guided relighting with structured generators. Our generator consists of two stages modeling diffuse
and non-diffuse effects. All intrinsic predictions are guided by losses w.r.t. photometric stereo reconstructions. (a) We use
a U-Net with grouped convolutions to make independent predictions of the intrinsic components. Predicted normals are
always re-normalized to unit vectors. Given a desired output lighting, we compute shading from normals and render a diffuse
output. (b) Conditioned on all modalities inferred in (a), we predict a non-diffuse residual and binary visibility map to model
specularities, cast shadows, and other effects not captured by our instance of the rendering equation.

model producing relit images from intrinsic components (re-
lighting). While the recognition model takes the form of a
traditional CNN, the generative model follows our image
formation process (Sec. 3.1) and is represented by structured
layers with clear physical meaning. In line with (6), we im-
plement the latter as a two-stage process: (Stage 1) Using the
desired target lighting, we compute shading from predicted
normals and multiply the result with our albedo estimate to
obtain a diffuse render; (Stage 2) Conditioned on all intrinsic
states predicted in stage 1, we infer a residual image and a
visibility map, which we combine with the diffuse render
according to (6). An illustration of this pipeline is shown
in Fig. 2. Since all its operations are differentiable and di-
rectly stacked, this allows us to learn the proposed model in
an end-to-end fashion from input to relit result.

We introduce losses for all internal predictions, i.e.,
albedo, normals, shading, diffuse rendering, visibility, and
residual. We emphasize the importance of using the right
loss function and refer to Sec. 5.1 for a comprehensive study.
In order to obtain the corresponding guidance during train-
ing, we use standard photometric stereo reconstruction [51].

4. Data

Our data comprises a diverse set of facial expressions
captured under various lighting conditions.

4.1. Acquisition

We record our data in a calibrated multi-view light-stage
consisting of 6 stationary Sony PMW-F55 camcorders and
a total of 32 white LED lights. The cameras record linear
HDR images at 2048×1080 / 60 fps and are synchronized
with a Blackmagic sync generator that also triggers the LED
lights. We flash one LED per frame and instruct our subjects

to hold a static expression for the full duration of an LED
cycle (32 frames ∼ 0.53 s). In order to remove captures with
motion, we filter our data based on the difference of two fully
lit shots before/after each cycle. For light calibration, we
use a chrome sphere to recover directions and intensities in
3D [13] but subsequently express them with respect to each
of the 6 cameras, such that we obtain a total of 6 · 32 = 192
different light directions/intensities for each image.

We record a total of 482 sequences from 21 subjects,
resulting in 482 · 6 · 32 · 32 = 2,961,408 relighting pairs.
Each pair is formed using any one of the 32 lights as input,
and any one taken from the same sequence and same camera
as output. We split them into 81% (17 subjects) for training,
9.5% (2 subjects) for validation and 9.5% (2 subjects) for
testing.1 We did not ask the subjects to follow any specific
protocol of facial expressions, besides being diverse, such
that our evaluation on validation/test data is on both unseen
expressions and unseen subjects.

After extraction of the raw data, we use photometric
stereo (PMS) reconstruction [51] to separate the input im-
ages I into albedo A, shading S with corresponding normals,
and non-diffuse residual images R = I −A� S per frame.

4.2. Augmentation

Modern neural architectures are much better at interpo-
lation than extrapolation. It is therefore critical to cover
the space of valid light transports as well as possible. To
this end, we perform a series of data augmentations steps
in an attempt to establish strong correlations throughout the
parametric relighting space: (1) We flip all training images
along the horizontal and vertical axis, increasing the effec-

1The split into training, validation and testing was done manually in
an effort to balance the demographics of the subjects. See supplementary
material for details.



Table 1: Loss selection. We explore the influence of differ-
ent training losses and evaluation metrics on direct image-to-
image translation (“pix2pix”) and our structured guidance
approach (“ours”). For each class, we show validation scores
for all pairwise combinations of 5 training losses (rows) and
the same 5 evaluation metrics (columns). The best model for
each evaluation metric is shown in bold.

M
Training
Loss

Evaluation Metric

L1 L2 LPIPS DSSIM
MS-

DSSIM

pi
x2

pi
x

L1 .0452 .0067 .2564 .1707 .1144
L2 .0516 .0082 .2663 .1911 .1369
LPIPS .0424 .0062 .1868 .1440 .0992
DSSIM .0406 .0055 .2138 .1378 .0930
MS-DSSIM .0422 .0058 .2358 .1547 .0913

ou
rs

L1 .0406 .0055 .2237 .1484 .0913
L2 .0415 .0056 .2302 .1547 .0953
LPIPS .0365 .0048 .1701 .1308 .0803
DSSIM .0362 .0045 .2008 .1270 .0793
MS-DSSIM .0410 .0055 .2165 .1470 .0910

[M: model; LPIPS: [56]; DSSIM: structured dissimilarity;
MS-DSSIM: multi-scale DSSIM]

tive dataset size by a factor of 4. Note that this also requires
adaptation of the corresponding light directions and normals;
(2) We perform a linear scaling x′ = s · x, s ∼ U[0.6,1.1],
of the images, shading, residuals and light intensities. In
practice, we did not observe substantial benefits compared to
training without scaling; (3) We randomly perturb the light
calibration with Gaussian noise n ∼ N (0, 0.012) to improve
generalization and account for minimal calibration errors;
(4) For quantitative results, we perform a spatial rescaling
to 1

8 th of the original image resolution (135 × 256), train
on random crops of size 128× 128 and test on center crops
with the same resolution to have comparability with SfSNet.
Qualitative results are generated by rescaling to 1

2 of the
original resolution (540×1024), trained on random crops of
size 512× 768 and tested on center crops of that resolution.

5. Experiments
Our models were implemented using PyTorch [33] with a

U-Net [37] generator and PatchGAN [14] discriminator (for
the final relit image) based on the implementations provided
by pix2pix [16]. The images in our dataset are camera RAW,
represented as 16-bit linear RGB values nominally in the
range [0, 1]. There is under- and over-shoot headroom, but
for training and evaluation we clamp them into this range
and linearly transform to [−1, 1] as input into the network.

5.1. Evaluation metric

Quantitatively comparing the relit prediction Îdst of the
generator against the ground truth Idst requires an appro-

priate error measure. We consider the L1 and L2 norms
but recognize that they do not coincide with human percep-
tual response. We also consider the “Learned Perceptual
Image Patch Similarity” (LPIPS) loss suggested by [56] us-
ing the distance of CNN-features pretrained on ImageNet.
Another prevailing metric of image quality assessment is
structural similarity (SSIM) [48] and its multi-scale variant
(MS-SSIM) [49]. In our evaluation, we use the correspond-
ing dissimilarity measure DSSIM = 1−SSIM

2 , and likewise
for MS-SSIM, to consistently report errors.

When defining the loss function during training, the same
choices of distance metrics are available. To densely eval-
uate their performance, we report in Table 1 the results of
training all intrinsic layers with the same loss function from
the options above. Surprisingly, we conclude that, for our
task, using DSSIM for the training loss consistently leads to
models which generalize better on the validation set using
most of the error metrics. The only exception is evaluation
using the LPIPS metric, which is better when also trained
using this metric. Therefore, we chose the models trained on
DSSIM for computing the final test results.

5.2. Baseline comparisons

We now provide quantitative and qualitative comparisons
of our proposed architecture, to related work.

5.2.1 Baselines

Our baselines comprise the following set of related methods.

PMS. To understand the lower error bound of a diffuse
model, we take albedo A and shading S from photometric
stereo (PMS; [51]) and diffuse render via A� S. We note
that this model has access to all light configurations at the
same time, with the desired target illumination amongst them.
Since this gives an unfair advantage, we do not highlight
results for this model in Table 2.

SfSNet (pretrained). We take the pretrained network of
SfSNet [39] and apply it to our data by using their decom-
position into albedo and normals, but ignoring the output
spherical harmonics estimate. Instead, we compute target
shading as the dot product of `dst and normals to have a di-
rect comparison with our assumption of directional light and
present the result after diffuse rendering.

SfSNet (retrained). We retrain [39] on the calibrated PMS
data and also provide the source illumination as input, to
which our model has access as well. Compared to the pre-
trained model above, this baseline can be seen as a fairer
comparison to SfSNet.

Pix2pix. The arguably simplest way to learn (7) from data
is to instantiate G as a traditional neural network consisting
of a series of generic convolutional layers with no semantic



(a) input image
(b) SfSNet [39]

(pretrained)
(c) SfSNet [39]

(retrained)
(d) pix2pix [16] (e) ours (f) ground truth

Figure 3: Qualitative evaluation on unseen subjects and expressions. We compare relighting (a) the input image with
(b/c) pretrained and retrained variants of SfSNet [39], (d) pix2pix [16], and (e) our model. In (f), we show the ground truth
capture of the given target illumination. Notice our model’s ability to generate realistic shadows and specular highlights.

meaning and no knowledge of the image formation pro-
cess.We adapt the pix2pix translation GAN [16] to our use
case by conditioning the generator on the input image as
well as the source and target illumination. This ensures an
objective comparison with our more structured model, which
also has access to lighting information.

5.2.2 Evaluation

Qualitative evaluation. We compiled a collection of qual-
itative results in Fig. 3. While the shading of SfSNet is
smooth, it has a bias towards an albedo which probably
resembles skin color in their training data and does not dis-
tinguish well between different skin tones and hair. As
expected, retraining their model on our data leads to more
accurate results. Still, due to the diffuse assumption, it looks
flat compared to our more expressive model. It misses specu-
larities and surface normals orthogonal to the light direction
are missing ambient light from inter-reflections. The pix2pix
model generates promising results, but its domain-agnostic
architecture often leads to physically implausible artifacts,

such as missing shadows. In comparison, the predictions
of our proposed architecture are typically the most realistic,
mainly due to its need to estimate a consistent albedo, as can
be seen for example at the hair in the first row of Fig. 3. The
last row shows a hand occluding the face, leading to strong
cast shadows that have to be introduced/removed. Our model
using intrinsic guidance gracefully handles that case.

While our data allows foreground masking computed
from PMS, we show the full image predictions for better
judgment. At test time, an off-the-shelf face matting ap-
proach, e.g. [46], could be used for cleaning the predictions.

We encourage the reader to look at more qualitative re-
sults of this type on our project page2, where we also show
relighting under a moving target illumination.

Quantitative evaluation. In Table 2 (first block), we an-
alyze the quantitative performance of our model in the de-
scribed scenario with known source illumination `src. The
test set comparison with SfSNet and the diffuse pix2pix
baseline confirms the importance of our physics-based guid-

2https://lvsn.github.io/face-relighting

https://lvsn.github.io/face-relighting


Table 2: Quantitative evaluation. We show a quantitative
comparison of our approach to baseline methods. Perfor-
mance on the test set is reported under the assumption of both
known (‘with’) and unknown (‘w/o’) source illumination.
All models have been trained with the DSSIM loss.

L Model
Evaluation Metric

L1 L2 LPIPS DSSIM
MS-

DSSIM

w
ith

SfSNet (R) .0636 .0121 .2508 .1840 .1277
pix2pix .0668 .0144 .2430 .1832 .1328
ours .0609 .0123 .2144 .1618 .1138

w
/o

SfSNet (P) .1359 .0424 .4703 .3221 .3121
pix2pix .0815 .0189 .2783 .2076 .1623
ours .0684 .0142 .2273 .1763 .1316

PMS .0391 .0047 .1630 .1125 .0561
[L: access to source illumination; LPIPS: [56];

DSSIM: structured dissimilarity, MS-DSSIM: multi-scale DSSIM;
PMS: photometric stereo; P/R: (p)retrained]

ance and non-Lambertian residuals. An extension of our
model without the assumption of known source illumination
(second block) will be discussed in Sec. 6.1. For reference,
the PMS reconstruction, restricted to a diffuse model but
computed from multiple images, is also shown.

5.3. Additional qualitative comparisons

We provide more qualitative comparisons to the following
recent portrait relighting approaches in Fig. 4.

The mass transport relighting [42] approach is different
in that it defines the target lighting as that of another portrait.
To match those conditions, we set the desired output to
directly be the ground truth reference image. Despite these
optimal conditions, [42] fails to generate specular highlights
and cast shadows, which are well-captured by our technique.

Single image portrait relighting using an environment
map is learned in [44]. Training images are produced by
compositing multiple ‘one light at a time’ captures. As
already discussed in [44], the method fails on strong light.

Finally, [58] learn to do deep portrait relighting using
a spherical harmonics representation, which also handles
smooth lighting exclusively, as can be seen in Fig. 4.

6. Extensions
We now demonstrate that our model successfully gener-

alizes to different scenarios, including unknown input illu-
mination, relighting with environment maps, and relighting
images captured in the wild.

6.1. Relighting with unknown source illumination

While we cannot remove the need for the target illumi-
nation, information about the source illumination is already

(a) input (b) MT (c) SIPR (d) DPR (e) ours

Figure 4: Additional qualitative comparisons. We relight
the input in the first row to the input in the second row, and
vice versa. Results in the Mass Transport (MT) [42] ap-
proach and Single Image Portrait Relighting (SIPR) [44]
were provided by the authors. For Deep Portrait Relight-
ing (DPR) [58], we use their provided code and approximate
the light directions manually.

(a) input (b) with (c) w/o (d) GT

Figure 5: Relighting with unknown source illumination.
(a) Input image. (b/c) Our relighting model with and without
access to source illumination. (d) Ground truth output.

contained in the input image, allowing for implicit learning
of `src. To illustrate our model’s ability to extract these sig-
nals, we trained a version of our architecture without explicit
access to the input lighting; these results, as well as a com-
parison to the corresponding baseline variants, are shown
in Table 2 (second block) and Fig. 5. As expected, all models
incur a small drop in performance compared to their coun-
terparts with explicit knowledge. Nonetheless, our model
without access to the source illumination achieves similar
(and in some cases better) performance than the pix2pix
model with access to the source illumination.

6.2. Relighting with environment maps

Directional light sources are a very general representation,
and our approach easily allows for relighting with environ-
ment maps. While more principled approaches like impor-
tance sampling are available [1], for illustrative purposes
here we simply sample environment maps by downscaling
them to 64×32 pixels and instantiating our relighting predic-
tion with one light direction per pixel. Since light is additive,
we then mix the resulting predictions according to their color
and intensity. Examples of a relit scene with three environ-



(a) input (b) env. 1 (c) env. 2 (d) env. 3

Figure 6: Relighting with environment maps. We consider
input images taken under a point light source (a) and relight
them with respect to 3 different environment maps (b-d).

ment maps are shown in Fig. 6, more results are contained
in the supplementary material on our project page.

6.3. Relighting in the wild

To demonstrate generalization outside the domain of our
lab-captured dataset, we conducted experiments using pic-
tures taken in an office environment with a Canon EOS 5D
Mark III and visualize results of relighting towards three
target lights in Fig. 7.

We emphasize the practical difficulties of relighting those
portraits, including unknown discrepancies in the imaging
pipeline (camera sensor, illuminant color, image processing
etc.) and approximation of the unknown source lighting.
Since the portraits are taken under uncontrolled office light-
ing, this results in images which are diffusely lit by multiple
input light sources. Although this violates our model as-
sumption of a single directional light source, we run our
model using an input light direction `src in the image that
would simply light the portrait centrally. To compensate
for different illumination colors in the input, we compute
the mean of a 51× 76 center patch and apply a linear color
transform towards our data distribution. The background is
masked by hand, which could be automated [46]. Note that
we can show neither quantitative nor qualitative comparisons
to ground truth relit images since they do not exist.

7. Conclusion
We propose a method which learns to relight a face

with strong directional lighting, accurately reproducing non-
diffuse effects such as specularities and hard-cast shadows.
We introduce a structured relighting architecture with seman-

(a) input (b) relit 1 (c) relit 2 (d) relit 3

Figure 7: Relighting in the wild. We consider portraits not
taken in our capture environment (a) and relight them with
respect to 3 different target point lights (b-d).

tic decomposition into, and subsequent re-rendering from
intrinsic components. On our challenging light-stage dataset
with directional light, the integration of an explicit generative
rendering process and a non-diffuse neural refinement layer
within an end-to-end architecture proved to be superior. We
found that our model tends to produce shadows and albedo
maps that are qualitatively closer to reality than all baselines.
A more structured approach also has advantages beyond raw
performance, including better interpretability/explainability
and the possibility for direct manipulation/extraction of its
semantically meaningful intermediate layers for downstream
tasks. A comprehensive study of different losses and evalua-
tion metrics highlighted the benefits of training on a percep-
tual loss over more traditional choices. We therefore believe
our model to be useful in a wide range of face-centric and
more general applications in, e.g., augmented reality.

Limitations and future work. While our model generally
deals well with cast shadows in the input image (see Fig. 4),
results get worse when there is so little light that the camera
mostly returns noise. Although a crude infilling for those
pixels based on context can be learned, an interesting future
direction would be to identify these pixels explicitly. A
dedicated infilling method, conditioned on the properly relit
parts of the image and other intrinsic layers, could be applied
to them. To cancel ambient input illumination (as in Fig. 7),
future work could experiment with taking a flash photo and
subtracting a second non-flash photo (in linear color space).

Acknowledgments. We thank Yannick Hold-Geoffroy and
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