Deep SVBRDF Estimation on Real Materials

Louis-Philippe Asselin, Denis Laurendeau, Jean-François Lalonde

Paper page: https://lvsn.github.io/real-svbrdf/

CONTEXT

Deep learning approaches can successfully be used to recover accurate estimates of the spatially-varying BRDF (SVBRDF) of a surface from as little as a single image. Most approaches in the literature are trained purely on synthetic data, which is often not representative of the richness of the real world.

We make the following contributions:

- Show that training such networks exclusively on synthetic data is insufficient to achieve adequate results when tested on real data.
- A new dataset of real materials obtained with a novel portable multi-light capture apparatus.
- A novel architecture for SVBRDF estimation.

REAL MATERIALS DATASET

- 80 Real-world materials captured in a dark room.
- Each captured set includes 12 RGB-D images.
- In total, 462 image sets (combinations of light intensities, distances to the camera, and material sample).

CAPTURE SYSTEM

A portable and convenient multi-light capture system is used to capture real world materials. The system is calibrated with a X-Rite ColorChecker and a photographer grey card.

5. 3D printed frame

6. Portable tripod

2. Primary light controller

3. Kinect Azure (RGB-D)

ACKNOWLEDGEMENTS

This work was supported by the REPARTI Strategic Network and the NSERC/Creaform Industrial Research Chair on 3D Scanning: CREATION 3D. We thank Charles Asselin for helping with data capture, Pierre Robitaille for electronics, Yannick Hold-Geoffroy for his invaluable proofreading skills, and Nvidia with the donation of GPUs.