

CONTEXT

Current 6-DOF trackers use mostly frame-based camera which imposes a high data bandwidth and **power usage**. Also, those methods are strongly limited by the **framerate** and **motion blur** for highspeed tracking.

We propose to use an event-based camera to increase the speed of 3D object tracking in 6 degrees of freedom.

We make the following contributions:

- Show how to calibrate a RGB-D-E setup
- Provide a new RGB-D-E 6-DOF evaluation dataset
- Increase object tracking performance on highspeed scenarios

CAPTURE SETUP

- Combine Kinect Azure (RGB-D) with a DAVIS346 (event-based)
- Spacially calibrated and temporally synchronized
- Apply linear depth correction

Demonstrated temporal and spatial calibration (Same events on two subsequent frames)

Frame t_0 Event $[t_0, t_0 + \Delta t]$

This work was supported by FRQNT, FRQ-NT Samuel de Champlain grants and Thales. We thank nVidia for the donation of GPUs. Project page: https://github.com/lvsn/rgbde_tracking

RGB-D-E: Event Camera Calibration for Fast 6-DOF Object Tracking Etienne Dubeau*, Mathieu Garon*, Benoit Debaque[†], Raoul de Charette[¶], J.-F. Lalonde*

*Université Laval, [†]Thales Digital Solutions, [¶]Inria

RESULT ON SEQUENCE

METHOD **TRAINING DATASET** • Train on synthetic data only • Events are generated using **ESIM** [2] simulator

ARCHITECTURE

Input: $\mathbf{e}_{[t-1,t]}$

kernel-5 conv-3-64 fire-32-64 fire-64-128 fire-128-256 fire-128-512 FC-500 FC-6 Output: ΔP

- EventSpikeTensor as input representation (discretize in **9 temporal bins**)
- **Runtime of 3.96 ms** for the event network on Nvidia GTX 1060 GPU
- L2 loss on ΔP

[1] Garon *et al.*, A framework for evaluating 6-DOF object trackers, ECCV, 2018.

[2] Rebecq, H. et al., ESIM: an Open Event Camera Simulator, CoRL, 2018.

- We combine two networks in cascade to compute the final position
- The **Event network** predicts the coarse position from event information
- A state of the art **RGB-D** network refines the final pose

• We capture an RGB-D-E evaluation dataset • 10 different sequences with more than 2400

• **Ground truth** annotated with ICP

frames

en

• Tracking failures are **reduced by more than 60%**

Tracking Failures			
	30fps	15fps	10fps
et al. [1]	83	130	166
	28	48	64